FREE SEA-URCHIN POSTER

Seaurchins Womiatsex Bats on Iracks Iuman Hair Maynticlshali Possinils Nusy Hilues

WALLAROO

OUT NOW ON DVD

Sex in the Bush is a humorous, touching and ultimately very personal look at the battle of the sexes.

Available from ABC Shops, ABC Centres and Leading DVD Retailers. Visit www.abcshop.com.au or phone 1300360111.

Summer 2005-2006 Volume 28 Number 7
Published by the Australian Museum Trust

6 College Street,
Sidney. NSW 2010.
Phone: (1)2) 932(1) (r)00)
Fax: (12) 9)32() 607.3
Web: wwwnatureaustralia net
Trust I'resident: Brian Sherman Museum 1 Director: Frank Howarth

Publishing Manager
JENNIFER SAUNDERS, B.SC.
cmail: jemmsalastmus.govalu Editor
GEORGINA HICKEY, B.SC.
email: georgieh@bigpond.com
Photo Editor

KATE LOWE

cmail: klowe@austmus.govau

Design \&e Production

RUSSELL GIBSON COSTELLO

cmail: inforargc.com.au

detertising

KEN HILL/BUSINESS MAGAZINES
Phone: (117) 3.399) 1885
email: ken.hill@husinessmagazines.com.au
Subscriptions.
Phone: ((1)2) 932() (2119
Foll-free (180(1) (1)285.58
Fax: (12) 9.320) (0)7.3
cmail: subscribe (atastmus.govau
Ambual subscription (t issues)
Within Australia SA36.30 ()ther countries $\mathrm{SA}+5$ Two (evear subscriptionn (8 rutues)
Within Australia SA69.30) (Other countries SA8.3
Threc--vear subscription (i2 issues)
Within Australin SA97.9() Other countres SA116 Prices molude GiSI where applicalle

Proudly printed in Australia by Penfold Buscombe
New subscriptions can be made by credtt card on the . Nanure Austratia toll-free hothne (180(1) 128558 or use the form in thus magazne: If it has been removed, send cheque, money order or redir card authorsation to the address abowe. made payable to the 'Australian Museum' in Australian currency
All material appearng, in Nature Australia is sopprighth. Reproduction in part or whole is not permutied suthlout turtuen authorsatanon from the Pruthstimg Mimager
N.ATVIRE: AC STRA.AIIA welcomes arteles on the natural and cultural herrtage of the Australasian Regron. Opmons expressed by the authors are therr own and do not necessarly represent the policies or views of the Australian Museumi. All artucles in NATT RII AC'STR.ALLA are pect-revicwed. NATL RI: ALSTRALIA is printed on archual-quality paper utable for library collectuons he NSW State Government.

Published 2005 ISSN-1324-2598

NATURE AUSTRALIA
is proud wimer of the 1987, 88. '89.

2()) 1 and 2005 Whitley Awards for
Best Zoological Periodical, and the 1988 \& ' '() Australhan Heritage Awards

FRONT COVER

The Antilopine Wallaroo (Macropus antilopinusl appears to be holding its own in Queensland's tropical savanna woodlands.
PHOTO BY DAVID WEBB.

Ihave a thing for sea urchin skeletons-their delicate patterms, muted colours and extraordinary symmetry: I always look out for them along beaches, often washed up amongst the kelp. However, I'm ashamed to admeit that, beyond what I learnt in First Year Biology, I knew very little about the live anmals. But thanks to Jane Williamson, from Macpuarie University, I now know a lot more. They play a complex and important role in the ecology of marine ecosystems but are alsosought after for their roe (egess). Jane hopes to address this imbalance with the development of echiniculture in Australia.

I also have a thing for sex-well, at least for the sex lives of amimals-as it seems does Clive Marks (Nocturmal Wildlife Research in Victoria) who managed to videotape, for the first time, Common Wombats mating in the wild. The sometimes-shaky hand-held infrared video footage shows the comical, if not violent and repetitive, lengths wombats go to for sex. The male chases the female around, bites her on the bum, either gets a kick for his troubles or rolls her over for some sex on the side, and then theyre off again for more chasing, biting, monnting, kicking and mating. Wombat sex was
once thought to be confined to the burrow but this film footage confirms that what wombats really want is space. It just goes to show how little we still know even about common amimals.

Jo Isata, from James Cook University, looks at another common ammal, the Commonon Brushtail Possum, but ones with a penchant for the beach. These adaptable possums have taken to life on (Queensland's Magnetic Island amongst the granite boulders, which make a fine substitute for tree hollows. And with little competition on the island, they are thriving. Jo is studying these beach brushtails with an eve to extending her knowledge to management of pest possums in New Zealand.

Bats are in the spotlight again, but this time we look at how they respond to forestry practices. We also learn about life in the tropics for the Antilopine Wallaroo, the aggressive antics of the Noisy Miner, plants that stretch the limits of life, and the long and the short of homan hair. Plus lots more.

Editor

Sea urchin spawning.

contents

ARTICLES

Antilopine Wallaroo Uncovered

Meet Australiais only large macropod restricted entirely to the tropic BY EUAN RITCHIE
24

Hedgehogs of the Sea

sea urchims play a pivotal role in the ecology of marine ecosystems, yet we are only just begiming to understand them. BY IANE WILLIAMSON

Beach Brushtails

The way Common Brushtail Possums have taken to life on Magnetic Iland is testament to the adaptability of the specties.
BY JOANNE ISAAC
40

Bats on Tracks

How do bats respond to changes in forest structure after logging?
BY BRAIDLEY LAW
48

Wombat Sex

Discover the uncommon sex life of the Common Wombat.
BY CIIVE A. MARKS

56

regular features

THF BA(KYARI) NATURAI IST

Miner Misdemeanours

As much as wed love to hate them. we ve got to admire those Noisy Miners. BY STEVE VAN I)YCK
18

RARE \& ENITAN(IERE:I)

Beautiful Nursery-frog

Restricted to the misty uplands of Thornten Peak in northern (Queensland. the frog with the beatutial belly is particularly volnerable to global
warming.
BY (: ()NRAI) H()SKIN
20

Will) THIN(is

Genes for Beans

Australian plants have a lot to offer when it comes to improving the world's crops. BY TIM I ()W
22

PHOTOART

Insect Gallery

Stoming images of weevils, beetles. moths and flies.
BY (;UNIHER SC.HMII)A

64

(il ()ISAL SP()TLICH1

Squirming Fleshy Tentacles of Doom

When it comes to food-ceating competitions, the Star-nosed Mole is a wanner.
BY SIM()N D. P()LLARI)
68

; 1UMAN

Naked Apes Letting Their Hair Down

Long hair, short hair, no hair: head hair, body hair, facial hair, pubic hair. What does it all mean?
13Y RICIHARI) FULLA(;AR
70

IHE SECRET LIFE OF PLANTS

Immortal Plants

long-lived clones dwarf previous estimates for oldest living plants.
BY TIM ENTWISLE
72

IHE (AST W()RI)

Fertilising the Greenhouse

Predicted effects of increased greenhouse gases range fiom the benign to the cataclusmic, and such uncertante is delaving adaptive responses to global
envirommental change.
BY DAVII) B(DWMAN
80

COLUMNS

1 Up front

4 Letters

6 Summer
Some natural gomgs-on
around Australia this season.

8 Nature strips
News of the latest discoveries of our natural world.

74 Reviews

77 Society page
Clubs and societies
around Australia.
78 Q8A
Your questions answered.

letters

Lady's Man?

I enjoyed R ichard Fullagar's article on the "Little Lady of Flores" (Nimure Aust Spring 20(5). However, I'm curious as to why Peter Schouten's illustration of Hobbit (Homo floresiensis) was of a male when the partial skeleton on which it was based was female

- Gina Bailey (Queanibeyan. NSW

Woman the Hunter

I must correct the
commonly held assumption iterated by John Davidson in
his speculative Letter "Menoprause and Mothers-in-law" (Nature Aust. Winter 2(0)5) that "humans are unusual in that only men are able to hont". Davidson need look no further than Australia to see that Aboriginal women were. and in many areas still are. keen hunters, regularly providing their families with meat as well as vegetable food. Desert women hunted reptiles, marsupials of all kinds. Dingoes, certam birds and, since their
introduction. Cats. They
used homting and digging sticks and, often, spears (but not woomeras). Their husbands hunted similar amimals and, rarely, Emus Coastal women hunted land amimals and went fishing, as they still do. Their menfolk also hunted turtles and Dugongs.

Aboriginal literature includes many accounts of women hunting. The role of the grandmother had less to do with protecting the virtue of her peripatetic daughters-in-law than with looking atter children while the younger women went food-gathering. She also contributed to the family economy: women in their fifties and sixties may no longer spear

[^0]Dingoes or kangaroos, but they still track and kill reptiles and, on the coast, catch tish.
-Pat Lowe
Broome, WA

Upside-down Shower

Reading a Letter in a back isste of your magazine (Summer 1995-96)—about Black-faced (.uckooShrikes having a 'bath' in a fig tree-reminded me of an "incident' my' hosband and I witnessed in the summer of 2002. It had been very hot and dry for a long time. (ieelong being a dry area generally: Then, one day, we were treated to a magnificent thunderstorm, which we watched from the safety of our outside living room. From where we room. From where we electrical wires in the street of our backyad neighbours. And there we saw seven Galahs hanging upside down with all their feathers fluffed out, bottoms up. wings spread out and inverted, just like our grandehildren on the trapeze of their swing set.

The birds were obviously allowing the tor rential main to wash away the dust. parasites etce accumulated over all those dry weeks There did it all in unison. and for the same length of time. How I wish I had had a camera on hand to record this extraordinary event. It just goes to show that retirement has its rewards. Previously we never had the time to just watch the birds!
-Francina P? Postuma
CORIO. Vic:

WHLDLIFE PHOTOGPAPREF OF THE Yeni 2005

HOT TO CROC

Saltwater The nesting season of the
Crocodile. Saltwater Crocodile (Crocodylus porosus) extends from ()ctober to May; spanning the wet season of northern Australia. As a result. summer is peak breeding time. so you should be even more careful if youre planning to visit am tropical swamps around this time
Nesting occurs in a variety of habitats, from riverbanks to swamps Female 'Salties' build a mound nest using regetation and mud, into which they lay $4(1)-60$ eggs. The raised nest helps reduce the likelihood of eggs being drowned by rising floodwaters.
Females stay with their eggs, protecting them
from predators. Still, despite all this care and attention, on average at least 8() per cent of egers die during incubation.

After about 90 days. depending on nest temperature the baby crocs start to emerge from the eggs. In response to their cries, the female digs open the nest and gently caries them in her mouth to safety: The nest temperature will also have determined the sex of the babies-the closer the temperature is to $32^{\circ} \mathrm{C}$ the higher the proportion of males; the further away: whether hotter or cooler. the higher propertion of females.

For more about these awesome predators, check out Australian crocodiles: a natural history (20)(1) bs Grahame Webb and (Charlie Manolis.

YOU NOT-SO-DIRTY RAT

"Look at the size of that Sewer Rat!" As mistakenidentity cases go, it's fairly understandable. but still untair. Yes, the Water-rat (Hydromi)'s chersogdster) really is a large rodent, but it's considerably more appealing than your average introduced Sewer or Brown Rat (Ratlus morvegicus).
Up to nearly +1 centimetres in body length and boasting a

Water-rat.
distinctive, thick, white-
tipped tail that adds about another 30 centimetres,
the Water-rat looks more like a small otter. Indeed, it was
once known as an Otter
Rat and, sadly, like the true otters, it was enthusiastically hunted for its thick, waterproof pelt. Such was the level of hunting that it eventually became Australia's first protected rodent species.
What's more, it behaves like an otter, too. It's a superb swimmer, diving to catch its food-mostly fish, crustaceans, large aquatic insects and other arthropods, and molluscs. Shelled food is typically taken to an exposed site such as a log or sand bar and there dismembered and eaten-the discarded hard parts are a telltale indicator of its presence.
Water-rats can breed at any time of year, but typically young are born in late spring and summer. Females construct their nests in burrows in the banks of lakes, rivers. creeks and other bodies of water. An average litter consists of three or four young, but can be as high as seven. The young are

Rounded granite boulders created by exfoliation.
suckled for about four weeks and remain with their mother for up to four more weeks. And by the age of four months, some females will be
ready to start breeding themselves
To learn more about these appealing rodents, visit
www1.healthycountry.com/ CCScience/TB/Hydromyschrysogaster

NATURE'S SEASONAL BOMBS

Have you ever been around an area of granite on a very hot or cold day and heard a resounding "crack" like a rifle shot: Don't womy yoùre not being used for target practice-it's the rocks themselves that are exploding

Granite, like other igneous rocks that have formed deep inside the Earth under high temperatures and pressures, is prone to a weathering process known as exfoliation.

As the rocks are exposed by weathering and erosion of the overlying material, their internal pressure is reduced. which causes fine expansion cracks to form. These emable water to get into the rock where it reacts chemically with the minerals, leading to further propagation of the cracks. If it gets cold enough. the water can freeze, causing the cracks to expand. sometimes violently.

The interion of the rock is fairly well insulated from the suns heat be the laver above and doesn't expand or contract at the same rate as the outer surface. So on hot dates too, the weakened outside layer can suddenly (and loudly) separate from the underlying cooler lavers. In rounded granite boulders. the lavers often tlake off in concentric layers. just like onion skins, so this process is called onion-skin
weathering.

All this explosive
exfoliation is good news for the local fama and floma The exfoliated layers. whether still attached or laving on the ground below. make great shelters for insects, spiders and reptiles.

In addition, the process
hastens erosion of the rock and frees up minerals and trace elements essential for plant growth.

For more, see
www.gpc.edu/~pgore/geology/
history_lab/weathering.php

Preserved holotype of the Stout Infantfish.

FROM THE COLLECTION

This is the current holder of the title of world's smallest vertebrate. At just 8.4 millimetres in length, the largest known specimen of the Stout Infantfish (Schindleria brevipinguis) is smaller than many insects. Males mature at just 6.5-7.0 millimetres.

This is one of only six specimens, all collected by Jeff Leis (Australian Museum) in water ranging from 15 to 30 metres deep in coral lagoons near Lizard Island. All but one were collected in summer, but this probably has more to do with when ichthyologists do their fieldwork than the
species' biology.
Infantfishes retain many characteristics of larval fish, such as a lack of pigmentation, relatively large eyes and a reduced number and size of fins and teeth—hence the name. The 'Stout' part refers to the deep body compared with the other two described species of the genus. Even so, it's the lightest known vertebrate, with a weight of just one milligram.

For more about this miniature marvel, check out www.amonline.net.au/fishes/ fishfacts/fish/sbrevip.htm

[^1]
nature strips

(COMPILEI) BY (iEOR(iINA HICKEY

RI(HARI)FULLA(iAR KARINA HolIIEN. KIREN Mc: MEE, RACHEL
SUIINAN, ABBI: TH()MAS. (ifoRI)IE TORR ANI)
Vansssa W'o(ol)S are
REGUIAR (OONTRIBUTORS
T() NATURE STRIPS.

T
To Bee or Not to Bee heres something very endearing about European Bumblebees (Bomhtus terrestris). With their bige fuzzy bodies, they re about as close as insects get to being cute and cuddll:

And thevie particularly appealing to some horticulturists. who would love to see them allowed inte Australia to help pollinate their crops. But their reguests have been rejected due to fears that they may harm Australian ecosystems, primarily through competition for nectar and pollen with native insects and birds, and
reduced seed production in native plants. The
horticulturists counter that the bees would do little damage as they preter moroduced to native plant specties.

But do they: The evidence for this supposed preference is pretty sketchy. so Andrew Hingston
(University of Tasmanial) set out to see if it was real or not. Wiorking in a garden in the suburbs of Hobart. where a feral Bumblebee population has been established for over a decade. Hingston monitored the bees foraging preterences approximately every 10 days
between November and March when they are most common. He simply walked through the garden at 30 minute intervals between dawn and dusk for two days, noting the flowers on which he first saw each Bumblebee (.A新. .1. Zool. 5.3: 29).

After determming the abondance of each of the different types of tlowers. he calculated the number of ${ }^{-}$ Bumblebees observed foraging during each study period per 1.000 flowers for both mative and introduced species. When he compared these data be found that the bees showed no real prefierence at all. Indeed their preterred plants included both native and introduced species. So. endearing as they are Bumblebees look set to remam undesmable aliens for the foreseceble fiture

- C.T.

Are European Bumblebees a threat to Australian wildlife?

Marsupials See Red

Australia's marsupials have long had a reputation for being the primitive cousins of placental mammals. In recent years. however. scientists have been building different evolutionary picture of our marsupials with increasing evidence revealing several unique opecialisations.

The latest breakthroughs involve the way they see the world. Research headed by Catherine Arrese
(University of Western Australia) has demonstrated a colour-vision system in marsupials that is as well. if not more, developed than our owns.
Arrese and her team have recently shown the presence of thee different types of cones (colour photoreceptor cells) in the retima of the Quokka (Setomix. bruchy'urns) and Southern Brown Bandicoot (Isoodon obesulus) (Proc. R. Soc. B 272: 791). Most mammals possess only two cone types (that is, are dichromatic). Previousts: only primates were known to have the three-cone condition (trichromacy) now being reported for marsupials

Having three cones allows the perception of a wider range of colours than the two-cone sistem. ()ne cone type detects shorter wavelengths, from ultraviolet to violet; another detects long wavelengths. in the red region of the spectrum: while the third cone type. which detects middle wavelengths, is most sensitive to green light
This study huilds on previous discoveries of trichromacy in the Fat-tailed Dumart (Sminthopsis crassicauldata) and Hone! Possum (Tiasipes rostratus)

Marsupials, like the Quokka, join primates in full-colour vision.
(Cirr. Biol. 12: 6.57). The presence of three cone types in four phylogenetically distant species indicates that trichromacy is a common feature among the Australian marsupials.

$$
-\mathrm{K} . \mathrm{Mc}:(\mathrm{i}
$$

Copy-catting Elephants

T$x=-$ live with a cripple long enough, you limp. This "rubbing off" of habits (whether good, bad or indifferent) certainly applies
to overseas travellers who adopt the accent of their host comntry: And it now also applies to elephants, two of which have been found to copy the sounds of their neighbours.

The first case involved a ten-vear-old female African Savanna Elephant (Loxidonta africallit) called Mlaik, who was heard making strange sounds while living in semicaptivity in Kenta, about three kilometres from the busy Nairobi-Mombassa
highway: When Peter Tyack (Woods Hole ()ceanographic Institution) and colleagues amalysed recordings of her calls, they forond them to be nothing like the grunts and rumbles of other African Savanna Elephants, but a near-perfect match to the roar of a distance truck (Nature $+3+$ $4.5 \overline{5})$
The other case involved Calimero, a 23-vear-old male African Savama Elephant that had lived for

African Savanna Elephants copy the sounds of their neighbours.
is years alongside two female Asian Elephants (E:lephas maximus) in Siwitzerlands Basel Zoos. Rather than emitting the nomal gromts of his own language. (alimero was only ever heard to make the chirp-like vocalisations typical of Asian Elephants. Comparison of the spectrograms of Calimeros chirps and that of his Assian room mates showed the match to be remarkable.

These are the first known examples of vocal leaming and mimiory in a terrestrial mammal other than primates. Vocal mimicry also occurs in birds. bats and dopphins, and studies have suggested it helps strengethen individual bonds within the social group. Even though Mlaika may have got it wrong by mimicking an inamimate noise, somending like your neighbours appears to have its advantages.

Chewsy Termites

Termites are guite choosey about the wood they much on. both in terms of its size and tepe. Presumably this allows for different spectes to live in the same area without competition. But what has always puzzled researchers is how termites can quickly tell so much about a certain piece of wood, given that they are bind.

Theodore Evans (CSIRO). Joseph Lai (AD)FA/UNSW) and colleagnes oftered termite workers
(Copprofermes domestious) pieces of pine that were either 211 or 160 millimetres in length. This particular species of termite showed a greater preference for the shorter pieces. chewing significantly more and deeper tumbels into the wood (P.N.4.S 102: 37.32). The researchers suspected termites used vibations to - (i.H. choose between the sizes. so
they recorded the sound of termites chewing into both small and large pieces of wood. and then played these recordings back to the termites. When the signals from chewing a large plece of wood were played into a small piece of wood. the termites would stop their tumelling: and when vibations from cating small pieces of wood were played. the termites sprang into action. regardless of the size of the wood the were in at the time.

Termites generate vibroacoustic sigmals that bounce off the interior of the wood and back through the body of the insect. bringing information about the size of the wood. The lower the frequency, the larger the piece of wood and therefore the less dessiable. Evans at al. suspect that the termites have cars
(vibration-detecting organs) on their feet. This research is
not only of interest to diehard termite fins but could also be used by pest controllers. All they would have to do is to play recordings of termites chewing big bits of wood (which they dont like) into infested parts of a house and the termites in theory
should pack up and leave.
-A.T.

White-Arse Pigeons

There arent too many places to hide in the sky. so its a grood idea to have at least one trick up your sleeve to throw predators off the trail.

Feral pigeons (Rock 1) owis. Columbal liviat exhibit a range of plumage colourations including the "wild varime. Which is bluegrey with a white rump patel between the base of the tail and lower back. laterested in how the barions plamage

Peregrine Falcon chases a whiterumped pigeon.

combinations affect predation in a population, and in what advantage wild colouration might convey to its owners. Albert Palleroni (Harvard University) and colleagues studied the frequency of each of six pigeon phenotypes among the fatal victims of Peregrine Falcons (Fako peregrimus).
They found that, although most plumage types were captured in the same relative proportions as they occurred in the population, only one dead pigeon in 50 had a White rump, despite comprising over 20 per cent of the population (Nature 4.34: 97.3). To confirm their observations, the researchers swapped the rump plamage of 756 p pigeons. They found that previously white-

rumped pigeons were killed in the same propertions as the other colours, while newly whites had greatly improved survival statistics. Because no pigeon can out-fly an attacking Peregrine Falcon (which can get up to 1.57 metres per second). and because all pigeons perform the same evasive rolling manoeuve to
avoid attack, Palleroni suggests that the flash of white must somehow distract the predator, giving the pigeon an added second or so to make its escape.

> -R.S.

Living with Giants

δcientists agree that the first Australians must have lived alongside many large
(now extinct) birds, reptiles and marsupials, collectively. called megatima. But how long did the rehationship last: How did they cope?

Some have argued that the relationship went sour quite yuickly, but not all can agree exactle when humans first arrived in Australia (certainly by +5.000 years ago), or when eath megafamal species became extinct (few if any survived the glacial extremes
$30,00(0-20,0000$ years ago $)$. While there is no direct evidence that Aborigines even hunted megafana, Gifford Miller (University of Colorado) and colleagues support the theory that Aboriginal ancestors who first colonised Australia inadvertently modified the vegetation by burning the bush. They argue that Aborigimal fires devastated

Australian Ethical Balanced Trust

Australian Ethical ${ }^{\text {® }}$
Investment + Superannuation
www.austethical.com.au phone 1800021227

[^2]pickings of specialised browsers like Genpornis newtoni-a giant bird almost twice the size of todays Emu-whereas the Emu survived on a less fussy diet (Science 301): 287). The scientists studied thousands of eggshell fragments. determining their ages and also extinct diets (by analysing isotopes). and concluded that (empornis apparently ceased laying in several parts of Australia about tis. (x) (e) years ago. After then, only Emu eggshells are found.

Others argue that increasing aridity played a critical role in the vegetation changes and that

Genformis actually survived until about 30 , 000 y years ago, co-existing with humans in Australia for at least 15.0100 years. New evidence comes from Cuddie Springs (southeastern Australia)—an ancient lakebed where thousands of stone artefacts and megatamal bones have been found in discrete lavers. dated to between 28.006 and 36,0100 years ago.

Some scientists have doubted the integrity of the site. suggesting that older bones have worked the ir way up to younger sediment levels. However Clive Trueman (University of Portsmouth) together with Judith Field and colleagues

Genyornis newtoni was a giant bird, nearly twice the size of an Emu.
(University of Sidney) recently studied the geochemistry of the bones. which acquire trace amounts of rare earth clements that indicate whether fossil bones have remamed in their original position after burial (PN.AS 1(12: 8.381). They found that some bones had moved around in lower (older) units. but argue against mixing of bones in the successive archacological lavers with stone artefacts and extinct megafatma (Genpornis, Diprotedon, Sthemurus and Proterintiodoul.

The archaeologists argue that the fate of the megatama was driven by continental and global climate change, and was out of the hands of humans. They support the theory that humans may have had the giants for dimer but Aboriginal ancestors camot be guilty of either megatamal or envirommental genocide. Instead, they tend to blame it on the weather.
—R.E.

Seahorse Balls

In the strange life of fishes. one of the strategies used by those species that fertilise externally is to produce hage amounts of sperm from large testes. This helps reduce the chance of a female's egegs being fertilised with sperm from another male (sperm competition). and reduces the impact of dilution of sperm by seawater. But in seahorses and pipetishes (family Syngnathidae), some species fertilise externally while others fertilise internally:

The males of all sying athids have the responsibility of carrying the egge somewhere on their bodies. But whereas those thought to fertilise eggs externally carry them attached to the skin (in

Entelurus and Nerophis

 pipefishes) or in shallow skin depressions (the seadragons), the internal fertilisers brood and nurture their eggs in a substantial brood pouch (seahorses and Sy'ngnathus pipetishes). In the pouch brooders, the female lavs her eggs directly into the male's brood pouch, which he fertilises internally: This makes it virtually impossible for another male to fertilise that particular female.(Charlota K varnemo (Stockholm University) and Leigh Simmons (University of Western Australia) predicted that the externally: fertilising syngnathids would have proportionally larger testes than those that fertilise internally: To their surprise. however, they found no difference (Biol. I. Limn. Soc. 8.3: 36,()). The researchers boldly question a long-held assumption of external fertilisation in syngnathids. which holds that males "decorated with unfertilised eggs must swim through a cloud of their own perm to fertilise them. They instead suggest some radical new ways of fertilisation. Perhaps the female brushes up against the male just long enough to fertilise each egeg before she attaches it to the male body: In other words, it's not what he's got thats important. but how he uses it.
-A.T.

Noisy Reefs

To fish and invertebrates. reets can be like nos underwater cities: hubs of intense activity from which the "chattering' of bus! marine life-forms can be detected in the surrounding water for many kilontetres.

Now University of
Edinburgh biologist Stephen

The sounds of the reef lure young fish.

Simpson and colleagues
believe this clamour might be important in luring fish and invertebrate larvae out from the perstasive pull of ocean currents to the reet homes where there settle ready for adult life.

They tested the theory in a recent series of experiments on patel reefs constructed from coral rubble in waters off Lizard shand, at the northern end of the (ireat Barrier Reef (Science 308: 221). Nightly for almost a week, the researchers played smapping shrimp sounds and fish calls on half the reets while leaving the others silent.

They then measured the level of new recruits to each site from two key reeffish families, the cardimalfishes and damselfishes. They found considerably more lavae from both familes had settled out of the water
column to take up residence on the noisy reefs compared with the silent ones.
Next the researchers investigated whether highfrequency and lowfrequency reef chatter resulted in different recruitment levels. Damselfish species showed a preference for reefs with high-frequency (predominantly shrimp) sounds, while cardinalfish larvae settled on reefs with high- and low-frequency (fish) someds in equal numbers.

The research raises questions about the potential impacts of noise pollution from marime-based human activities such as shipping and drilling for minerals. And it could also lead to the development of new ways to restock depleted marine reserves.
-K.MCC

Ciant Eagles of Middle Earth

11${ }^{n}$ Tolkion's Lord of the Rimgs. Middle Earth is inhabited by giant eagles that swoop in to rescue Frodo from the dangers of Mordor. The idea of monster-sized engles flying around New Zealand on The Lord of the Rings film set might secm like a fanciful idea. Yet, according to recent DNA rescarch, it is not that far from the truth.
Only 亏on years ago, New Zealand was home to one of the largest birds of prey ever to have graced our shies. Now extinct, Hast's Eagle (Harpagornis moorei) had a wingspan up to three metres and weighed as much as 15 kilograms. This fierce predator launched brutal attacks on moas, flightless birds that weighed up to $20(1)$ kilograms yet were defenceless against aerial assault.

To learn more about the eagle ${ }^{\circ}$ evolutionary history. Michael Bunce (Oxford University) and colleagues extracted DNA from 2.0)(o)-year-old fossil bones and compared it with DNA from 16 extant species (PLoS Biolog) 3: 1). They expected to find the extinct bird closely related to the large Australian Wedgetailed Eagle (Agnila dudaxi). The results showed that. while it did have an Australian ancestor, its closest relative was the 1 ittle Eagle (Hicradetus morphemoides). Which at less than one kilogram is one of the worlds smallest eagles. Stranger still, their common ancestor lived only about a million years ago, which means that Haasts Eagle increased in weight hy 10 to 15 times in this relatively short period of time. Such a rapid change in size is

Haast's Eagle, with its wingspan of three metres, attacks a pair of moas.

maprecedented in
evolutionary records. And the fact that it occurred in a species still capable of flight makes it even more
remarkable.
So why did Hast's Eagle grow so bige so quickly: The researchers saly it's likely to be due to the size of their prey and the absence of mammalian predators. Ruling the roost, with no competition from mammals. Haast's Eagle would have fed unhindered on its island paradise. That is, until humans came along. Archaeological evidence shows the eagle died out within two centuries of human settlement. so ams giant eagles seen flying over Middle Earth todar belong
in the realms of f.antass.

Friendly Foxes

Iooring for a NEW PET? How about a Fox?
Brian Hare, from the Max Planck Institute in Leipzig. (iemmans, studied Foxes (Jilpes mulpes) in Siberia where they were bred to be friendly towards humans. Over 45 vears, the Foxes have come to resemble Dogs, with floppy ears. multi-coloured coats and curly tails. And they can even read human body language

Hare hid food under containers, and when he pointed towards the food, the Siberian Foves found it easil: It sounds simple, but

Pet Foxes: a friendly Fox is a smart Fox.
the ability to guess what a human is thinking (that food is under the container) is no small accomplishment, and normal Foxes, Chimpanzees and Grey Wolves failed the test (Curr: Biol. 15: 1).

It seems that by breeding the Foves to be friendlier, they accidentally became smarter. Hare believes the same thing happened with Dogs and Grey Wolves. Dogs are better at reading our body language than wolves, but perhaps it wasn't because we bred them to be intelligent, but because we bred them to be friendll:
In terms of pet potential. Hare says the Foxes are not quite perfect. They hide food under the sofa and leave it there to rot. Foxes in a pet store near you? Not yet.

Ants' Aerial Acrobats

W
hen it comes to navigating the jungle canopy: many animals find it easier to glide through the open spaces and make a yuick free-fall descent. Squirrels do it, frogs do it.
snakes do it and, it now seems, even ants do it. Ecologist Stephen Yanoviak (University of Texas Medical Branch) and colleagues made this unusual discovery while working in the Peruvian rainforest.

Falling Cephalotes atratus ants can steer themselves back to the safety of the tree trunk.

Perched 30) metres up in the canopy, Yanoviak noticed when he brushed off biting ants that they'd fall then land on the tree trunk and climb back up. These arboreal ants, Cephalotes atratus, appeared to be actively steering their free fall. As no other wingless insects are known to do this, Yanoviak decided to investigate further.
By painting the ants' rear legs with white nail polish, dropping them, then videotaping their fill, the researchers were able to track their dive through the air. They found that about 85 per cent of ants landed on the tree, compared with an expected five per cent if they were falling randomly

ROYAL EXCHANGE HOTEL

Excellence in Accommodation in City Centre -

This elegant, small and charming Art Deco Boutique Hotel is situated in a prime location, just a stone's throw from shops, restaurants, gaming and sporting facilities.
Deluxe and Superior rooms are of the highest standard with modern ensuite bathrooms and high standard features.

The Royal Exchange Hotel offers
 a lounge and courtyard area for guests, with an aim to provide friendly professional service

ROYAL EXCHANGE HOTEL Broken IIII. Australi..

For Reservations call toll free on 1800670160 or visit our website www.RoyalExchangeHotel.com

320 Argent Street Broken Hill NSW 2880
Ph: 08-8087 2308 Fax: 08-8087 2191
mail@royalexchangehotel.com

QUICK QUIZ

1. What are casmarinas also commonly) known as?
2. Gwion Gwion, Mimi and Wandjuina are examples of what?
3. How many phanets are there in the solar system?
4. What do silviculturists cultivate?
5. What is the nickname of the new Homo species found on the Indonesian ishand of Flores?
6. In which year did the Chernoly' mudear reactor explode?
7. What objects do some female dolphins in Shark Baly carty on their noses while forasing?
8. What percentage of the Earth's atmosphere is axgen?
9. Name the protein found in. feathers, hair and hoofs.
10. What type of tree is the 'Prisen Tree' in Derty', WH?
11. Answers on paoc 79)
(Nillure 4.3.3: 62t). ()n takeoff. the plummeting ants splaved their legs to slow their fall. increasing drag like a parachutist.
Then, to gain control of their trajectory, the ants orientated their bodies so their hind legs pointed towards the tree. Incredible: the ants were also seen to make 1801° turns in midair. so if they missed the landing. theyd make a hairpin turn and glide in for a second attempt.

Giliding is obviously an adrantage for high-canopy dwellers like Cephalotes. If approached by a predator. the tiny daredevils can BASE-jump to safety at four metres per second without falling all the way to the forest thoor.
-K.H.

Sexy Platypus

Tot only is the Platypus weird on the outside, its genes and chromosomes are weid too. Frank (irutzner
(Australian National University) and colleagues have discovered that, mather than a single pair of sex chromosomes, the Platypus (Omithorly)nclus amatimus) has five.

Using fluorescent "chromosome paints" to identify and track chromosomes under the microscope during cell division, the researchers were able to identify which of the Platypuss 52
chromosomes were autosomal (inherited equally by both sexes). and which determine sex (Nature 4.32: り, B: PNS IOI: 16257).

Most mammals and hirds have one pair of sex chromosomes. In homans. females have two X chromosomes and males an \mathcal{X} and a Y. while in birds it is the opposite. with males having a pair of Z chromosomes and females a Z and a W. In Platypuses. howewer, females have two coprese cach of five \mathcal{X}
chromosomes, while males have one copy of the five X_{S} and one copy of five Y s. Cirützner and colleagnes were able to watch hows: during the process of sperm formation (meiosis), the ten marked sex chromosomes formed a long chain, all lining up in perfect alternating fashion (XIY1 X2Y2 X.3Y3X+Y $3 \times 5 \mathrm{Y} 5$). This is the only way to manage such an unwichly system, allowing all five Y s to end up in one sperm (to produce male offspring). and all the Xs in another (to produce females). Ans mixing of X and Y chromosomes in the same sperm would lead to unviable offipring. Amazingly, no mistakes were witnessed in the hundreds of sperm examined.
Significantly, the researchers found the X 5 chromosome to resemble the bird Z chromosome. while the XI chromosome

The Platypus is a continual source of wonder-both inside and out.

at the other end of the chain resembles the human X This suggests a completely unexpected evolutionary linkage between the sexchromosome systems of mammals and birds. challenging the long-held view that the two systems evolved independently.

Ancient Pubs

B
ars in the ancient town of Pompein were not the dems of imiquity they were thought to have been. according to archaeologist Steven Ellis (University of Sydney). Previous writers. molent and modern. associated bars with Pompeiis low life-drunks. thieves and prostitutes
(Pompeii brothels are notorious for erotic
frescoes). but Ellis counters that bars provided regular services like accommodation and a place to rest, talk. buy food and drink (Food \& History' 21: +1).
The problem with studying bars in Pompeii is that few food or drink remans survived the eruptions of Mt Vesurius that buried the city in 79 AI). However. Ellis went back to the Latin inscriptions, contemporary books and archaeological structures, and found. of an estimated 577 shops, there were 1.58 retail outlets with serving counters. 1.30 of which had cooking and storage facilities. These bars
were frequently placedso that they faced bustling intersections. They were also often found near temples. for the comenient purchase of food and wine offerings for the gods. Up from the main city gates, there were 12 open shop fronts. each with a bar in fill frontal view of tired travellers trudging up the hill (I. Rom. Archacel. 17: 371)

Eat-in or take-awaw.
bars were possibly more important than today. espectially for poorer chasses who were certamly not dining on the couches we see painted on the lavish villa walls. Life was not that good. But the bars were not that bad either.

A service counter used to sell food and drink to the ancient citizens of Pompeii.

Miner misdemeanours

Not only are Noisy Miners: highly 'aggressive, the') are, in zoological circles, spectacularly' (in)famons. for it.

Ffor many families tile Saturiday (paper arrives in the dark to the piping 'win-win-win' calls of Noisy Miners (Manorina melanocephalala). It's a pity that most of us snore through that ten-minute session-it is. without a doubt, the only harmonious thing miners are capable of doing all day.
But back to the newspaper. Did you

Noisy Miner

Manorina melanocephala

Classification

Family Meliphagidae (honeyeaters and Australian chats).

Identification

Drab grey; black crown and bandit mask; bright yellow beak, legs and bare skin behind eyes.
Sexes similar; length 26 cm .

Distribution

Eastern half of Old south of Laura, throughout NSW (except extreme north-west); Vic.; southeast SA; central and eastern Tas.

Biology

Highly social, colonies comprising a few to several hundred birds. Males and females promiscuous. Only female builds cup-shaped nest and incubates 2-4 brownblotched eggs. Nestlings fed by mother and attendant males. Staple diet invertebrates, nectar and fruit. Usually breeds winter-summer.
know that you can assess the mental health of your family by sorting through what's left of the Saturday: paper one hour after it's been disembowelled? From my teenagers I follow a trail of honey blobs sliding down images of people embellishod with moustaches, blackened teeth and augmented breasts. My wife leaves Olympic chains of welting coffec-cup rings around hacked windows where interesting ideas were smipped out for her scraphook. And me, what do I leave behind: Great tufts of ripped-out hair-enough every week to stuff a jail mattress.
The hair is torn out in desperate defeat. Not so much from my broods crying need of professional help. but from the agony the local Noisy Miners inflict on me. Each Saturday morning I tell myself to relax. sit on the verandah, wash the Valiun down with some good coffee. slump over the paper and enjoy: the backyard birds. And every time the same drama unfolds. A rosella might start to nibble a lantana berry: or a Rose Robin might land above me with a moth. when down they come out of the blue. like grey sniping spittires, snapping and spucaling-wartiors from the hooligan rat-pack of Noisy Miners driving out anything that hasn't got feathers as dull as their own.
I could maintain my rage with a lot more dignity if they only brutalised those birds that were either attacking and cating them. or at least staling their insects and nectar. But when a poor old dove is nearly nutted for scoffing down a few grains of spilt chook food (thee thought of which would
make a miner gag) then sometimes I feel like reaching for the bazooka instead of the binoculars.
Now after observing 20 years-worth of helligerent manners from that verandalh, it really is time I sat down and had a good hard think about those delinyuent rubbernecks. But have you ever tried to be honestly objective when a true-blue Aussie is being called to account: Weire not talking here about the introduced chocolate-brown Common (Indian) Myina (.Acridotheres tristis) that struts around cities and is consciomably easier to knock off because it fills valuable nesting hollows with plastic bags and garbage, making them unsuitable for a lot natives, and it doesn't really belong here in the first place. We are talking about an Australian honeyeater as dinky-di as Blinky Bill. How can we appraise it honestly without letting the old school-tie strangle our objectivity:
Well. let's introduce a little science into the court room. Are Noisy Miners unduly aggressive: Volume 5 of the Handthook (bible) of Australian, Nen Zcaland and Antartic birds (20101) describes them as "conspicuous, noisy and aggressive. driving off all other avian species from |their| communal territory". Not a real good start. It goes on to document a study from southcastern (Queensland that actually callied up the number of bird species attacked by Noisy Miners at the one site. Sixtyfive species were hammered and molested by the miners, including not only small birds like pardalotes. finches and other honeveaters (six species). but grebes, ducks, parrots (1.3 species). herons. comorants and pigeons. Ecologist Doug Dow (University of (Quecensland), who did the long-term research, later described Noisy Miners as "one of the most pugnacious, aggrexsive species in castern Australia" and documented several attack; where miners were seen catching and pecking the heads of other birds (House Sparrow: Black-headed Pardalote. Sacred Kinyfisher) until theyd killed them. Dow concluded that the occurrence of a single species of bird successfully excluding all other species from its halbitat wh "unique". So the miswer to the question is yes, hut not only are Noisy Min-

Noisy Miners are the bullies of the bird world.
ers highly aggressive, they are, in zoological circles. spectacularly (in)famous for it.

Following up on this, more recent studies have shown that, by removing Noisy Miners from remmant patches of degraded woodland. a major influx of honeveaters and insectivorous birds occurs within the first three months. In fact, after their removal, species richmess was up to 16 times greater than in control plots.

I can feel a shaky hand slowly reaching toward the bazooka barrel. But wait, be fair! Say something in their defence! How did it all get to this? How does one specties of native bird get to follow humans around wherever they go... wherever we make backyard gardens, suburban parks, golf courses, landscaped shopping centres and schoolyards:

The simple truth is that we and the miners get off on the same things, aggression not necessarily being the least of them. But in our love of open spaces. mature trees and mancured lawns we play right inte their hands. And when. in our concern to revegetate areas ravaged by new development. We plant gardens full of nectar-dripping grevilleas and bottle-brushes, we then provide
fodder for more miners to defend.
The success of these prying standover merchants evidently stems from their well-choreographed teamwork that in turn relies on their ability to see one another quickly. Not having CB or radar. their commmatation network jams when trees and shrubs interfere with their lines of vision. so they usually opt for tall-treed open space and avoid densely planted areas.

Studies on what makes the miner community such a roaring success read like cult fiction. The females practically detest each other but are completely promiscuous with the males, which all pitch in to help feed and protect the chicks no matter who fathered them. Strong, aggressive, protective males are so important to the horde that males outnumber females 2.3 to 1. Male chicks nearly always hatch first in the clutch giving them that edge in the ensuing developmental struggle and the whole group is glued together bes singsongs, corroborees. mass mating orgies. gang wartare and pooled aggression.

Taking all this on board. lie decided to make a stand. deal with the problem and strike a blow for sanity. I know my course of action will shock and disappoint my family and might be distress-
ing to others, but it's time for difficult decisions to be made. From now on...you guessed it...l stay in bed on Saturday morning and read the paper there. The busimess section would describe this as a "win-win' situation for both stakeholders. \square

FURTHER READING

Dow, D.D., 1977. Indiscriminate interspecific useression leadings to almost sole occupamier of space by a single species of bird. EIIル 77: 11.5-121.
(Gre), M.J., Clarke, M.I: \& Lo nin, R.H., 1997. Initial changes in the arian commmitios of remmant encalypt moodlands followings a reduction in the abumdance of Noisy Miners, Manorina melanocephala. Wildl. Res. 146: 6.31-6.78.

Piper, S.D. E゙ Cattcrall, C.P. 20(1)3. A

 particular casce and a selueral pattern: hyperagegressive behwiour hy one sipecies mal)' mediate arifanmal dectrases in fragmented Alustralian forest. (Oikos 101: $6(1) 2-61 \%$Dr Steve Van Dyck is Senior Curator of Vertebrates at the Queenslani) Museum where. he has WORKEI) SINCE 1975.

Beautiful Nursery-frog

On its island in the sk'y the Beantifiul Nursery-frog lives amomest stunted rainforest, montane lieath and boulder piles.

Y()U MICHT THINK ()F NORTHERN Queensland as being hot, but standing here on Thornton Peak listening to the Beautiful Nurseryfrogs calling in the pouring rain, it's far from it. It's so cold lom shivering, and it's wet, very wet-just the way the frogs like it. In the tropical ranforests of northern Queensland, mountaintops provide cool islands in an otherwise balmy landscape. These upland refuges have retained maique flom and fauna and there is now concern regarding the impact of global climate change on these spectes. Thornton Peak is one such mountaintop and it is here that the Beautiful Nursery-frog (Cophivalus comcinmes) lives.

The Beautiful
Nursery-fiog is a member of the microhylid frog family, which is represented in Australia by 16 species in two genera. Most specties are small (approximately two contimetres) and all are terrestrial breeders, laying small clutches of about 1.5 eges in moist leaf litter or amongst logs or rocks. Tadpole development is visible within the cramped contines of the eggs and fully formed froglets hatch out. Males usually tend the eggs, possibly protecting
them from predation by ants and other insertebrates, but Australian spectes are not known to interact with the soung after hatching. (The males of some New (iumean microhylids transport the froglets around the forest on their back!)

The Beautiful Nursery-frog has had a confused taxonomic history: It was formerly known as a species distributed above 700 metres elevation across several mountain ranges north-west of Cairns. However, it was recently discovered that what we were calling Cophisalus comitums really included two distinct species-the relatively widespread one and a species restricted to the misty uplands surrounding Thornton Pak. Taxonomic rules dictate that the name C. comilums is attached to the holotype (the specimen on which the description was based), and this was the species restrictcd to Thornton Peak. The common name, Beautiful Nursery-frog. Was given to this species in recognition of the stumning red, black and white marbing of the throat and belly: A new name. (. aemioma (the Tapping Nurs-ery-frog). was given to the more widespread species. The two species differ in appearance calls and habits, and genct-
ic data have revealed that they are actually only distantly related amongst the Australian Cophixalus.

Resolving the taxonomic confusion was important as it allowed the recognition of the Beautiful Nursery-frog as a species restricted to the uplands of Thornton Peak. The species only occurs above about 1,100 metres (the summit of Thomonton Peak is 1,374 metres) and has a total distribution of little over seven square kilometres. On its island in the sky the Beautiful Nurs-ery-frog lives amongst stunted rainforest, montane heath and boulder piles in an area with an annual rainfall in excess of 3,500 millimetres and an average temperature of just $17.5^{\circ} \mathrm{C}$
Although currently abundant in its restricted range, and protected in Cape Tribulation National Park within the Wet Tropics World Heritage Area, the Beautiful Nursery-frog has recently been listed as a Critically Endangered specties under international criteria. This is becallse, in addition to being restricted to a tiny area, recont predictions of the effect of climate change on the species are dire. Stephen Williams and colleagues (James Cook University) have used bioclimatic modelling to predict the impact of climate change on vertebrate species restricted to the manforest of the Wet Tropics. Even using the most conservative estimates of the increase in global temperature over the next century. the modelling forecasts significant range reductions in most of the species and predicts that the Beautiful Nursery-fiog will be the first to go extinct-possibly within the next few decades!

The predicament of this species highlights climate change as one of the greatest current theats to the persitence of the unique upland commanities on the mountaintops of the Wet Tropics. (Only through intensive monitoring and research inter microhalitat use, physiology and other aspects of the biology of these upland spectes will it be possible to make informed conservation decisions.

FURTHER READING;

Hoskin, C.l., 2(1) - . Ansiralian mionolylid frose (Cophixalus and Austrochaperinal:

The Beautiful Nursery-frog, flipped onto its back (below) to reveal its colourful underside.
and breedings hiology. Aust. J. Zool. 52: 2.37-269.

Williams, S.E., Bolitho, E.E. E- Fox, 201)3. Climate chan!ese in Anstraliant tropical rainforests: an impending embionmemal caldastrophe. Proc. R. Soc Lond. B 2テリ: 1887-1892.

Conkad Hoskin is a zoologoist in the Sch(o) or INIEGRAIINE BIOIOCiY AT THIE UNIVERSITY (of Qufensi aral where he is COMPLETIN(His Ph.I). (ON Speg:IATION in froges of the Wet Tropics.

Genes for heans

 in the guest to enhamie a major crop.

AUSTRAIIA has CONTRIIBUTEI) VERY little to the range of world crops. with only the delectable Macadamia nut, firon the Australian rainforest (Manadamia intestrifolia. M. terraphy'la, and their hybrids). acheeving any foreign fame.

That's not much to skite about, wet there's a little more to the story than this. Australian plants have a more subthe contribution to make to world agriculture, by vielding up genes to improve existing crops. Over the years many a plant breeder has turned to our mative
vegetation in the quest to enhance a major crop.
In a striking example from the I9orls the Australian flora saved one industry from disaster. During the 195 ()s a discase that infects Australian native tobac-cos-Blue Mould (Peromospora whatimat -spread abroad and blighted tobacco crops in America and Furope Because this disease originated here. some of our mative tobaccos (Nicotianm species) are highly resistant. In complex breeding trials. commercial tobacco plants were cross-bred with several

Australian native Mung Beans are unappealing as foods compared with their larger cultivated counterparts, but contained within their chromosomes may be genes that help create better cultivated beans.
mative specties to create disease-resistant cultialas. This means that every 'cancer stick' you see is partly a mative product. the 1)NA in the cured leaves containing genes lifted from native tobaccos-traditional drugs of Outback Aborigines.

Breeding work on our plants can be traced all the way back to the early years of the 20th century: In 1909 a citrus breeder in America crossed an Australian rainforest Finger Lime (Citrus dusmaldsiat with a dwarf orange, although nothing usefol came of that. In more recent trials in Florida (in the 19701s and 198(1s). cultivated citrus were crossed with wild Australian citrus in a bid to improve their cold tolerance. But the plants either did not cross. or the hevbrids died in the cold.
More often than not the Australian relatives of crops, although in the same genus, are not close enough to hybridise frecly. Several projects have faltered or failed because progeny were not forthcoming. When native Wild Flax (Linum marsimales could not be crossed with commercial Flax or Linseed (L. usitatissimum), in the quest for edible-quality linseed oil, all interest was lost.

But some native plants contain such highly prized genes that advanced work is underway to extract them. Soybean Rust (Phatuopsora pactlyrthizi), the most serious disease of Soybeans (Cilocime mas. $)$. reduces yiedds in fields by up to 90 per cent. Australia has plenty of Soybean relatives and several show high disease resitance. Becaluse that resistance is controlled by a single dominant gene. there is ample incentive to breach the genetic barriers. The plant set to yied the gene is a dainty little twiner (eil)cine tomentella) found in cucalypt forest in castern Australia. Monsimto is interested in this work.
Native sorghums (sorghum spectes) show great prombe for the er resstance to drought, ergot and mites, and Texas A \& M University has hegun work with the ()uecosland govermment to surmount the Fertility problems. When cross-pollimation trials yield no oftspring the next step is to clucidnte the
fertility barrier
Sturts Desert Rose (Gossypium sturtianumi). the floral emblem of the Northern Territory happens to be closely related to cotton (bossypium species), and not only does it fare better in the cold than any cotton variets, it also offers resistance to a virulent new disease. Scientists are very interested. Stay tuned.

The Mang Bean (Iigna radiata) is an ideal candidate for cross-breeding because mative Australian Mung Beans hybridise freely with crop plants-they are the same specties. In the l980)s Boh Lawn (now at lames Cook University) estallished beyond doubt that the wild Mung Beans growing in Australia are mative plants. not escapees from farms. At the British Museum he examined a Mung Bean specimen collected in northern (Queensland by loseph Banks in 1770. proving that the native range of the Mung Bean extends from Asia to Australia. Lawn hopes to breed hardseeded Mung Beams better suited to Australias erratic climate than existing Asian forms.
In each of these examples any new cultiar is years away. but one striking new crop is ready for the world right now. The (SIRO's Steve Sykes works on disease resistance and tree size in citrus, and he started crossing mandarims with mative limes back in 1981. That project is progressing slowly. hut as a sideline he crossed a red colour-form of the Finger Lime (which hybridises easily) with a foreign lime and with little further effort produced a striking red fruit he christened 'Blood Lime". The bush tucker industry has seized upon this product (even though it is only half bush tucker), and interest has also come from abroad. Citrus growers want new colours to promote, to match the varied palette available for stone fruits, and Blood Lime may have a big future overseas.

Apart from the crops mentioned here. Rice. Sweet Potatoes and Bamanas may also benefit one day from a mative infusion. Adrances in gene technology increase the prospects of Australian genes finding their way into cultivated foods. Australia's contribution to the global crop base can only grow and grow. \square

The native tobacco Nicotiana excelsior is an important chewing tobacco for Pitjantjatjara people in central Australia, and one of several native species used in breeding trials to create diseaseresistant cultivated tobacco.

FURTHER READING

Brown, A.H.I). Eb Brubaker, C.I. 2000). Genetios and the conservation and use of Australian wild relatives of mops. Aust. J. Bot. 48: 297-303.3

Marshall, D.R., E-Brouc, P. 1981. The wild relatives of crop phants indigemous to Australian and their use in phant breedinge J.

Aust. Inst. Agric. Sci. 47: $1+9-1.5-t$
Davidsoll, S., 1985-86. Dereloping munes beams resistant to weathering. Rural Research. 129: 28-31.

Tim LOW IS A BIOHOGISI ANI) AUTHOR OF SIX BOOKS. INCIUIDING; FERAI HTt RE ANI) The NEH NATt RE.

The Antilopine Wailaroo is Australia's only large MACROPOD RESTRICTED ENTIRELY TO THE TROPICS, MAKING IT OF SPECIAL BIOLOGICAL INTEREST.

BY :UAN RITGHIE

WHAT IS YODUR IMACEE OE Australia's tropical savamas? Fiery sunsets. rast areas of golden grasslands, and a spectacular, rugged and remote wilderness? A reasonable and common view, but you may also harbour the romantic notion that this immense and relatively inaccessible expanse, covering nearly a quarter of mainland Australia, is shielded from the impacts of humans. Unfortumately, this view is incorrect. We are presently witnessing a broad-scale dectine in numbers of the north's diverse mammal assemblage, most of which is endemic to the region. This poses a significant theat to preserving Australias biodiversity:

One mammal reported as being in decline is the Antilopine Wallaroo (.Mactopus antilopimus). Most large macropods. in contrast to Antilopines. are thought to have increased in range and abundance since European setthement because of an increase in the avalability of grazing pastures and access to water. This makes the apparent decline of Antilopine Wallaroos puzzling Antilopine meaning "antelope-like", refers to the head shape and coat colouration of this wallaroo. And what makes it a wallaroos? Wallaroos are distinguished from wallabies by their larger body size (over 20 kilograms), and from kangaroos in having tepically more rounded cars and bare rhinariums.

The Autilopine Wallaroo is Australia's only large macropod restricted entirely to the tropics, making it of spectal biological interest and particularly important to preserve from a biodiversity perspective. It occurs in a marrow band stretching from north-west of Townsville to northern Cape York in Queensland, across the top of the

Northern Territory and into the northwestern Kimberley region of Western Australia. It is commonly found in low, undulating savama woodlands, and is ecologically most similar to the Eastern Grey Kangaroo (Matopus signtens). A distinctive feature of the Antilopine Wallaroo is its gregarious mature, with group sizes averaging three to four animals. Indeed groups of six to ten, and even aggregations of 20 or more, are known to occur. Arguably Antilopines are the most social of all macropods. The species also displays strong sexual dimorphism (difference in body size) with adult males weighing over 50 kilograms and adult females averaging 2(1)-30 kilograms
Anecdotal reports of Antilopinc declines are widespread and come from a broad spectrum of the community including pastoralists Indigenous people and park rangers. For example. Tim Flamery: in his book Country (20)4), makes reference to a conversation with Thompson Yulijirri, an Aborigimal elder of Arnhem Land, who speaks of the decline of the Antilopine around ()enpelli (Western Arnhem Land) and tells how his people must now go far to hunt this species. And a recently completed C.ALM (Deparment of Conservation and Land Management) mammal survey of the West and East Kimberley failed to record any Antilopine Wallaroos where they were once plentiful.

The declines are of major concern, coming on top of the existing extinctions of some 12 per cent of Australian macropods (typically smaller-bodied species) in recent times. However. anecdotal reports are obviously a precarious and unreliable way to assess a species conservation status. An extensive assessment of the Antilopine Walla-

roo is clearly required, a need that my Ph.I). is currently addressing.
My research ams to improve our understanding, and ultimately the conservation status, of this little-known species. I am studying the ecology of the Antilopine Wallaroo across its entire ()ueensland distribution-a logistically challenging task. considering this represents an area larger tham Victoria! My fied program therefore reguires me to undertake the enomons (hut enviable) task of driving all ower Cape York in the north and the Einasleigh Uplands in the south, to track down this emgmatio

macropod.
Specitically, my study addresses the current distribution and abundance, diet, habitat preference, reproductive biology: social behaviour, phylogeography: conservation and management of the Antilopine Wallaroo. There are three man factors influencing the Queensland environment where Antilopine Wallaroos are found: cattle grazing. fire, and extreme rainfall seasonality: characteristics shared by most of the monsoonal tropics. My research ams to determine the relative importance and influence of each of these
factors on Antilopine Wallaroo ecology
An alert mother and young: the ears are turned outwards to enhance hearing.

HAlFWAY Througif my stuidy, 70,(0)() kilometres of driving and 3.500) Antilopine Wallaroos later, what have I discovered; First, and most pleasing from a management perspective, Antilopine Wallaroo populations appear to be relatively stable in (Queensland. Most sites in ()ueensland where declines had been reported appear to currently support grood populations of Antilopines. However, based on anecdotal reports, this does not appear to be the case for populations in the North-

Pouch-cleaning behaviour by an adult female Antilopine Wallaroo with small pouch-young.

Antilopine Wallaroo
 Macropus antilopinus

Classification

Family Macropodidae.

Identification

Short fur, large black nose, white ring around inside and edge of ears; males red on back and white on underside; females similar but with grey through head, neck and shoulders to mid back; males $=50 \mathrm{~kg}$, females av. 20 kg .

Distribution and Habitat

Common but patchily distributed throughout low undulating tropical savanna woodlands in northern Qld, NT and the Kimberley in WA.

Biology

Seasonal breeder giving birth in wet season; highly gregarious; sexes segregate outside breeding season; activity crepuscular and nocturnal; feeds almost exclusively on grass.
ern Territory and Kimberley. This may be associated with inappropriate fire regimes, and I now plan to assess the apparent difference in stability of Antilopine Wallaroo populations across Australia by surveving these areas as well.
In relation to fire ecology, the highest abundance of Antilopine Wallaroos live recorded in Queemsland occurs on a cattle station mear Mt Surprise (northwest of Townsville) in the Einasleigh Uplands. It has not been burnt for over ten years, and the owner practises rotational grazing (where paddocks are regularly rested). a mamagement practice atspical for the region. This suggests that the Antilopine Wallaroo may be a fire-senstive species, preferming less frequent fires. Combdering that much of northern Australia is characterised by regular. intense and late-season fires. this is an innortant finding from a management perspective.
From a biological perspective, it is
the behaviour of Antilopine Wallaroos that is most intriguing. They display a behavioural phenomenon known as sexual segregation. currently a hot topic in the fied of behavioural ecology: It refers to a situation in which males and females of a species separate into singlesex groups when not breeding. In Antilopine Willaroos, groups of five to ten females. and bachelor groups typically consisting of three to five largersized males. ate a common occurrence

To identify the reasons behind sexual segregation in Antilopine Wallaroos. I decided to carry out a vear-long amalysis of the behaviour. activity patterns and diet of males and females near Mt Surprise. in the southern part of its range. Physiological theory predicts that females should have higher metabolic demands than males. due to their smaller body size and the energetic costs associated with reproduction (for example. lactation). Because grass is a relatioly fow-mutrient food, large quantities and large digestive times are

Distribution of the Antilopine Wallaroo in Australia.

Ritualised fighting between two young male Antilopine Wallaroos. In adult males this behaviour assists in establishing a dominance hierarchy.

Salt is often lacking from the natural diet of many large herbivores, and Antilopine Wallaroos routinely supplement their diet by using cattle licks. This adult female may be gaining minerals by licking a termite mound.
required. meaning that smaller amimals are disadrantaged.
In collaboration with Peter Fossan, a James Cook University masters student. we found. as predicted by the diet hypothesis, that male and female Antilopine Wallaroos feed on different types and amounts of plant material. Grass makes up $8 . \overline{3}$ per cent of the diet of males and $7+$ per cent of the diet of females, but females feed on significantIf more non-grass items (forls) than males (11 per cent compared with three per cent). Forbs are higher in mutrients than grass, and may be preferentially caten by females due to their greater energy demands. Within our study site. forbs were less aboundant and more
patchily distributed than grass. The female preference for forth mav at least in part explain sexual segregation, as it leads to separation of male and female groups. Interestingly: on the topic of nutrient availability: I have observed a female Antilopine licking a termite mound, presumably trying to access the mineral salts that had accumblated through evaporation.
However, diet is not the only possible explanation for sexual segregation in Antilopines. Other mechanisms, such as differences in the risk of predation (particularly by Dingoes and Wedge-tailed Eagles). social affinities between similar sex and age classes, or activity patterns. may offer equally plausible hypotheses
and remain to be tested. Females with young may be more vulnerable to predation than larger males and therefore seek sater areas to feed. In addition, because female Antilopines are smaller than males they must feed more often, resulting in higher levels of activity and a split between the sexes within the same habitat
()ne result of sexual segregation is that males spend long periods of time with each other. possibly impacting on their reproductive success. Mỵ observations indicate that a dominance hierarche tends to become established within bachelor groups. This herarche may establish the strongest male in the group, and the one most likely to succeed in male-male competition for females, and ultimately to mate in the breeding season. Ritualised fighting occurs regularly, involving clawing of the ground, head flicking, wrestling and wallaroo kickboxing. (One of the more unustal examples of dominance assertion I witnessed was an attempted copulation that lasted more than ten minutes. between a small and a medi-um-sized male. with a larger male observing.

On the topic of reproduction. my study has also defined the breeding season of Antilopine Wallaroos in Queconsland. Early in the wet season (late 1)ecember). When grass is most abundant and mutritious following heawy rains, young vacate the pouch. Adult males then begin fighting and displaying mate-guarding behatiour towards oestrous females. following them for extended periods. Births occur towards the end of the wee season (March-April). with young then remaining in the pouch over the extended dry season (May-Novenber) as food resources become depleted. This pattern appears to be very similar for Antilopines in the Northern Terrtory and Western Australia, from the limited information we have.

THERE Rfmains mu(H IC) BE IEARNE) about the Antilopine Wallaroo. and I feed privileged to be able to make a contribution to our understanding of this poorly understood macropod An unexpected benefit of the project has also been the relationships I have estab-

Thermoregulatory behaviour by a subadult male Antilopine Wallaroo involves licking the arms to facilitate evaporative cooling.

lished with a broad range of individuals and commminties, including graziers, Indigenous people and park rangers. I have been inspired by the genmine interest that people from these diverse groups have shown in myork, and the help and cooperation that they have extended to me. I am thankful that this is the case as these are the people who will shape the future of our tropical salvallmas.
My project is just one example of the recent escalation in research effort that is now being directed to the tropical satamas of northern Australia. I firmls believe that. although we face many difficult challenges in maintaining the integrity of these enviromments, our collective successes indicate we are heading in the right direction. \square

FURTHER READING

Croff. D.B., 1987. Socio-ecoles) of the Antilopine Wallaros Macropus antilopinus in the Northern Territory'. Anstralia, with olseervations on sympatric Macropus robustus woodwardii and Macropus agilis. Aust. Wildl. Res. 14.3): $24.3-2.56$

Russell, E...U. ĘRichardson, B.J., 1971 Some observations on the breeding, age strmeture, dispersion and habitat of populations of Macropus robustus and Macropus antilopinus (Marsupialia). I. Zool., Lond. 16.5: 1.31-142.

Woinarski, J.C.Z., Milnc, D.J. EWanguncern, (s., 2()) 1. Changes in mammal populations in relativel) intart landsapes of Kakiadu National Park, Northern 'Eerritory', Australia. Austral Ecol. 26: 36(1)-37)
http: / /saramua.ntu.e'dn.an/edncation/ students/antilopine_n'allaroo.html

Euan Ritchie is a Ph.D. stuident in the School of Tropical Biologiy, James Coor University (Queensiani). He is interestei) in researcilinc; the mammals () Nortilern Austraila ani) (ontirIbuTING towarl)s their Conseirvation.

Ouch! I remfabiber it well. I was eight years old the day I sat on a boulder at the cidge of the sea extracting a barbed spine from my foon. As I held the broken spine up to the sun in wonder, I began to mull over the creature I had unwittingly trodden on. At the time I had no idea that a lifetime of research into sea urchins had begun.

As far as looks and reputation go, sea urchins are not top contenders. These balls of pointy spines are "echinoderms". cehimes meaning hedgehog and derma meaning skin, and could be mistaken for a curled up hedgehog or echidna at first glance. The spines on urchins, however are completely different to those found on hedgehogs, echidnas or any other amimal. Comprised of calcium carbonate. urchin spines rotate like a ball and socket in the same manner as our shoulder joints, giving them the flexibility to point in most directions. Spines are used in locomotion but can also be used to brace animals when wedging into crevices, to transter food to the mouth. and in protection against predators. Some spectes even have spectialised sacs at the base of their spines that eject toxims on demand. Spines range from the thick, blunt structures of pencil urchins to the long. thin needles (up to 30 centimetres) of the tropical diademids. Their texture an be smooth, thorny or grooved. they are either hollow or solid, and their colour range is extraordinarily diverse. Indeed, spine characteristics are so vareded that many species are classified on this basis alone.

Among other distinguishing features of sea urchins are the pedicellariae Found between the spines. these broccoli look-alikes are dymamic stalked structures terminating in three opposing "jaws' that open or close via muscu-
lar control. Like spines, many pedicellariae have associated poison sacs. The jaws of the pedicellariae are constantly moving, and their job is to clean the urchin's surface of umwanted debris and organisms. The pedicellariae bear an uncamy resemblance to the carnivorous plants in the movie "The Day of the Trifficts"
Urchins have a series of tube feet or podia that they use for locomotion. Fluid-filled camals extend through the hard skeleton (test). comnecting an internal vascular system to each of the mane (up to 2.(0)(1) external thinwalled tubular feet. (The pores through which these canals pass can be seen when you hold an empty; spineless urchin test up to the light.) Pumping water through a one-way valve into a tube foot causes the foot to clongate by hydraulic motion. ()nce the end of the foot touches a surface, it adheres through a combimation of suction and chemical means. The tube foot retracts when longitudimal muscles contract and the fluid is forced back through the same one-way valve into the central vascular system. In addition to locomotion. the tube feet are used to excrete waste products, through diffension across the thin membranous walls, and may also be involved in chemoreception and the mamipulation of food. Such a simple and elegant structure does, however. have its drawbacks. Fish have a hab it of nibbling on exposed tube feet, and in some urchins loss or damage to 20 per cent or more of the tube feet will cause irreparable damage to the vascular system and result in death. Urchins ate also susceptible to disease through small tears in the vascular ststem.
Sea-urchin tests can be either radially symmetrical ("regular') as in the urchins

that commonly reside in the intertidal zone, or bilaterally symmetrical (irregular'), like sand dollars or heart urchins. I believe that if Michelangelo had designed an animal it would have been a regular sea urchim: its symmetry is truly a work of art. The test of a regular urchin is comprised of a mosaic of flat ossicles arranged in ten madial sections extending from the gental pores and anus at the top, and fimishing at the mouth on the underside. There are five sections that contain the tube feet and these are colled the ambulacral grooves: These are interspered with five "interambulacral grooves" devond of tube feet. Spines occur on both tepas of grooves.

The hard structure of sea-urchin spines and tests means that they preerve well. Indeed, fossil records show that eed urchins have existed relanively unchanged for at least (ex) million years. At their peak of diversity there

Holopneustes inflatus, closely related to the

Velcro Sea Urchin (Holopneustes

purpurascens), uses the kelp Ecklonia radiata for both food and protection.

were an estimated 20.000) species. Today there are about 6.500 species of echinoids (regular sea urchins, heart urchins and sand dollars). They have made their home in every marine habitat, from the intertidal to the deep sea. and at temperatures ranging from the warm tropics to the icy-cold polar waters. Such a ubiquitous distribution is probably due, in part, to the simplicity of their internal design. These ammals have a simple neroous system with no obvious bran, and feature very few internal structures-just the jaws (called the 'Aristotle's lantern'), the intestine. and the reproductive organs.
Individual sea urchins are either male or female and most reproduce by shedding their gametes (sperm and eggs) into the surrounding water, a process

Australian Sea Urchins

Classification

Phylum Echinodermata, class Echinoidea; 42 species (8 families) of regular (radially symmetrical) sea urchins; 43 species (12 families) of irregular (bilaterally symmetrical from anterior to posterior) sea urchins.

Identification

Families separated by shape of test, positioning of peristome (mouth) and periproct (anus), internal supporting structures, ambulacra (podia-bearing sections of test), along with patterning and morphology of spines.

Habitat \& Distribution

All marine benthic habitats, from estuaries to deep sea, and tropics to Antarctic polar waters.

Diet

Most are herbivorous, but some opportunistic, omnivorous and even carnivorous. Capable of biting through tough kelp, encrusting algae, and most sessile invertebrates.

The Western Slate Pencil Urchin (Phyllacanthus irregularis) uses its thick spines to wedge into undercut limestone caves in areas of heavy wave action.
known as extemal fertilisation. Sea urchins of the same spectes often form aggregations just prior to releasing gametes in whehrom, thous maximising the chance of succerstul fertilisation. synchonous spawning is frequently induced by specific extermal cues such as the begiming of a full moon, or to a paticular sea temperature or photoperiod. Progeny are then dispersed to varying extents depending on the length and form of their larval stage. Some urchin spectes have larvae that subsist on internal nutrient reserves. while the larvae of others feed on plankton. These "planktotrophice larvae have the potential to disperse greater distances than "lecithotrophic* larvae. Which must find an appropriate place to settle betore their reserves are exhansted.

AUSTRALIA IAS H2 SPEGISO REGULAR (radially symmetrical) sea urchins. The biology and basic ecology is well known for several of these spectes but not for the majority. The most studied sea urchin in Australia is undoubtedly: the Black Sea Urchin (Cemtrostephamu:
rodecesii). This is the dominamt sea urchin on shallow subtidal reefs alonge south-eastern Australia. It hides in crevices and under houlders during the dins. and emerges to feed mainly on large kelp and foliose (leafy) algae found on the surrounding substratum once might falls. This pattern of foraging canses dramatic "halos" of areas cleared of large plants but dominated by crustoxe (encrosting) algae around their daytime hodeaways. These heavily grazed habitats are known as white rock areas or 'barrems. and are mamtamed if the density of Black Sea Urehims stays above a critical lewel. ()nce the urchins are removed or the density is reduced. the barrem shaft back to areas dominated once more by foliose algae and perhap even kelp beds. A mosaic of barren areas interspersed with patches of kelp occurs throughout the shallow subtidal zone in New South Wales, and is in part defined by the location of the urchins cryptic hiding places.

The roe (egers) from sea urchims is considered a delicacy in many conn-

THE ROE FROM SEA URCHINS

is considered a delicacy in many countries, and a small fishery exists for the Black Sea Urchin in New South Wales.
tries and a small fishery exists for the Black Sea Urchin in New South Wales. for local sale and export. SCUBA divers collect urchins in autumn to early winter when the amimals are getting ready to spawn. They target medium-sized urchins as these have the most roe per rolume (larger urchins are more variable and thus more unpredictable) and, because the quality of the roe is directly related to diet, they harvest urchins either in or on the edge of kelp forests rather than in barrens. Regular removal of urchins of a particular age-class and from particular areas has the potential to substantially alter community structure and may have cascading effects on the ecology of many other commercially
important fishes and invertebrates. including lobsters and abalone. For example. the abundance of Black Sea Urchins is often inverselv related to that of the Blacklip Abalone (Haliotis rubra) in south-eastern Australia, although the competitive interactions between both species are complex.
Another commercially and ecologically important Australian species is the Purple Sea Urchin (Heliocidaris erpethro(stamma). This urchin occurs in shallow coastal waters fiom Caloundra in southern (Queensland to Shark Bay in Western Australia, including all coastlines of Tasmania. The Purple Sea Urchin is generally more sedentary than the Black Sea Urchin. Although also a night feed-
er, the Purple Sea Urchin usually stays within its crevice and captures detached algae drifting past. It is thus less likely to cause the halo effects of barren areas interspersed with kelp forests as seen in areas imhabited by the Black Sea Urchin. In salying this. however, we sometimes observe high-density aggregations (over 100 individuals per sopuare metre) of Purple Sea Urchins that result in intense grazing pressure. These aggregations can have important consequences for commonity composition and algal growth. Unfortumately: the

Sea urchins spawn externally and successful fertilisation is, in part, left to the vagaries of the currents.

The Black Sea Urchin (Centrostephanus rodgersi) is the dominant urchin in shallow subtidal reefs in south-eastern Australia.
public often mistakenly assumes that these large aggregations constitute plagues that should be eliminated, without thinking about the consequences of remosal.
()ne of the more unmsual species of sea urchins in south-eastern Australia is (Holopmenstes purpuraseens). Which I refer (0) as the Velcro Sea Urching on account of its prominent tube feet that stick to your hand when you hold it. Unlike most urchins, large individuals live in the algae they consume. Therefore, their habitat distribution depends on the breadth of their diet. Apart from spending many hours musing on the intelligence of eating your own house. me co-workers and I noticed that. in areas around Sydnev, small Velcro Sea Urchins occur predominantly in the fronds of the leafy red alga Delisea pulchra. whereas larger individuals live amongst the kelp Eiklomiar radima. Both
plants are rich in different typers of biologically active chemicals. and these appear to drive the pattern of hosit-plant use by the different sizes (and presumably ages) of the urchins. New recrunts settle in response to chemicals exuded from the red alga and, because the red alga is unpalatable to urchims. they Feed on diatoms and other algae on and around their leati home. However, as they get bigger, they are then forced to move and secondarily colonse the kelp. This act of moving between algae can greatly increase their risk of heing caten and mot many individuals make it to their fimal destimation.

Why Velcro Sea Urchims intiall! respond to the red algas metabolites when they dont even eat the plant remains a constantly perplexing puzzle for me. Some of my aremes for research have included investigating the posisible added protection that the red
alga may give to a timy urchin (but I found thas to be no mone than that afforded by other algase). and whether the urchins are responding to chemical cues from the alga because it is a reliable indication of high-cpuality hab bitats nearby (there is a good possibility of this). What is clear though is that the Velcro Sea Urchin. like most urchm spectes. is a creature displaying highly complex ecological patterns- not bad for an anmmal with no real brain.
Sea urchinn play a protal role in regulating community structure in a diverse range of marine habitats. and are also important sources of food for many predators, including blue gropers. octopuses, Port fackion Sharks and large startishes. Predators do, however, have to overcome those spiky bines before getting to the good stuff. and often sulffer in the process. A few vears ago there was a large Eastern Blae Coroper (titho
erodus viridis) at one of me regular research sites that clearly had a penchant for urchin roe and, having discosered that I routinely uncovered urchims during my dives. followed me closely whenever I was in the water. This groper quickly earned the name "Merv" because of the substantial monstache of spines protruding from its upper lip.

CONSIIERRING: 1HE IMPORTANT ecological role sea urchins have in temperate marine ecosystems, it makes sense not to greatly impact on their abundance and distribution. But as more and more people discover the joys of consuming urchin roe this fine balance has the potential to topple. (ilobal demand for urchin ree is steadily increasing. yet in most regions where urchins are fished overseas. populations are either coonomically extinct or in a state of decline. The market for edible sea urchins is unlikely to decline in
the near future and sea urchins, espercially shallow inshore species like the ones we have here in Australia, will be particularly vulnerable to overharvesting.
To alle viate some of the pressure on wild sea urchin populations, there is considerable interest in echiniculture (apuaculture of sea urchins). Currently: there is no commercial echiniculture in Australia but my colleagues and I are researching ways of optimising lifecycle stages and improving quality of roe for local sea urchin species, which will hoperfully be good candidates for echiniculture in the future. Based on overseas predictions, this could prove to be an extremely protitable industry if we get it right.

FURTHER READING

Andren: N.L. et al., 2()()2. Stums and managememe of world sca urchin fisheries. Oceanogr. Mar. Biol. Amm. Rev: f():
$3+3-42.5$
Miskells, A., 1996. Sea urchins of Australia and the Indo-Pacific. Capricornica Publications: Sodence; Australia.

Williamson, I.E., Carson, D. G., de Nj's, R. \& Stcinherg, P?D., 200t. Demographic consequences of an ontogenetic shifi by a sea wrehin in response to host plant chemistr)'. Ecology 8.5: 1.3.5-5-1.371.

Wright, I. T., Durogian'th, S.A., Ruggers, (:..., Stcinlerg, I?D), Williamsom, I.E. E Poore, A. (3.B., 2(0).5. Densit)-dependent sea urchin grazing: sclective removal of species, chances in communit)' composition and alternative commmaty) states. Mar. Ecol. Prog Ser. 298: $14.3-1.56$.

Dr Jane W'lllamson is lieal) (of the Marine Ecolociy Grour at Mac:(quarie University in Syinney. wilere she lectures in marine.

Mathae's Sea Urchins (Echinometra mathael) are commonly found in high densities on open intertidal areas in tropical regions. Here they are eating small epilithic algae covering dead coral rock.

L()N: HHEM (DR HATE THEM there are few Aussies (or Kiwis for that matter) who dont have an opimion on the Common Brushtail Possum (Trichosurus vulpeala). Seemingly ubiguitous in our towns and cities and a frequent visitor to our gardens, it will come as no surprise that the Common Brushtail has one of the widest distributions of any native Australian mammal. The success of the spectess lies in its ability to adapt to a wide variety of habitats and food sources. (ommon Brushtails will den in roofs, gatages, nest boxes and rocks. as well as in the more traditional tree hollows. These supposedly folivorous (leaf-eating) marsupials have also been documented to eat everything from
fruit and flowers, spicy Mexican beef burritos (my own observation whilst moonlighting as a waitress!), to the eges and fledglings of endangered New Zealand birds. However. despite this apparently adaptable nature the Common Brushtail Possum is also in decline in a number of areas, including Westem Australia, the Northern Territory and Cape York Peninsula, most likely due to habitat modification and clearance.
From ? (0) (0) 20(1). I studied the life and times of a population of Common Brushtails on Magnetic Island. Magnetic Island is a small continental island. with an area of $5.18 t$ hectares, about eight kilometres off the coast of Townsville, in tropical north ()ueensland. The island was so mamed be fanes

Measuring a small pouch young of a Common Brushtail Possum on Magnetic Island.

Cook because. as he was suiling past in 1771), the ship's compass acted strangely: leading him to the (erroneous) condusion that the island hand magnetic properties. More than half of the island is zoned mational park and the vista is dominated by large hills and spurs, with elcevations of up to $5+10$ metres, and corered with extensive gramite outcroppings. The climate on the island is tropical and highly seasomal, with a dry winter season from May to ()etober and a wet summer season from November to April. The vegetation is predominindy grasty eucalypt woodland
My study site was located on the weit side of the island in and area of open woodland. complete with the large gramite boulders typical of the rest of the island. The main tree species there were

eucalypts, but also wattle (Acacia) and paperbark (Melalemia) species, the native Yellow Kapos Tree (Cochlospermum gilliwaci), and Burdetin Plams (Pleios)' nium timorense), which the possums were very partial to.
I began trapping in early May zolo| and I remember the first possma I catoght very well. She became known as female 723 (taken from the number on the microchip that I mected under the skin of each possum). From the wear on her first upper molar, 72.3 was about four years old and. at the time, had a ting pink pouch young. Possum 72.3 was still alive when I fimished mes study -I calnght her nearly every month for the whole three years-as was her daughter, called 3038 , whose territory overlapped with her mother's (as is typ-
ical for female offspringe . Possman 30.38 had her first younge a male, when she was two years old. He stated around with her mont he was nearly 12 months old, before setting off to find a territory of his own. Most males disperse by about mine months of age, so this one seemed to have been a bit of a mummy's boy! Possum 723 and her extended family were one of many such families at mese which at the end of the study I knew to contam about 30 resident females and 25 males.

S(), WHAT'S SO SPEC:IAI ABCOUI THESE Magnetic Island marsuphals? First of all, the habitat and conditions on the island are quite different to those on the mamland. There are many rocks on the island but relatively few large trees with

Habitat typical of the author's study site and much of Magnetic Island. The possums den in the large rock crevices, which are abundant.

hollows, forcing most of the possums to den in rock erevices, not trees. Also. like many islands. Magnetic Island is less biodiverse in terms of animal species. compared with the mamland. In particular there are few mative mammal or bird predators present, such as Dingos (Cams lupus dinge). Carpet Pythons (Morelia spilota) are probably the only mative predators of Magnetic Island possums. although it is possible that barking owls (Nimex commens), which are currently increasing on the island, may take the odd molucky individual. And there is also only one other arboreal, folivorous marsupial present to compete for food-the Koala (Phasiotlaveres cencrens). Koalas are present at relatively low densities (it's thought they were introdaced to the island from nearty mainland populations) and are also much fiessier caters than the possums and therefore probably don't present much competition. Perhaps as a combined result of these fictors, the possum population on the island is very high-in fact, only one brushtail popu-

KOALAS ARE

much fussier eaters than the possums and therefore probably don't present much competition.
lation that has been studied in Australia has had a greater density, and that was recorrded on mother isl.and. Tasmmamia. Female possums on Maynetic ISland can produce up to two offippring each yeurs: all sexullly mature femmeles produce one young in the main breeding season in autumun and some femmales go on to have a second in early pring. My research has shown that these double
(Top) Magnetic Island possums are generally quite lucky, as there are relatively few predators about. However, occasionally an unlucky individual can get taken by a snake, such as this Carpet Python. (Right) This young possum is about eight to nine months old. Offspring are able to cling onto their mother's fur amazingly well as she jumps from tree to tree.
breeders are often older females that give birth to their autumb offspring earlier than other females, giving them time to fit in a second young in spring. I also discovered that young female possums breeding for the first or second time are much more likely to give birth to a son than other females. As daughters remain close to their mothers' home ranges for the rest of their lives. foung females probably produce sons in order to aroid life-long competion with female offipring for resources like food and den sites.
The high density of posisums on Magnetic hand seems to have led to another stange phenomernon-some poosum live exclusively in the mant

groves. As you might imagine. tidal mangroves are not ideal possum habitat: the leaves of mangrove trees are full of salt and difficult to digest, and there are also very few sutable den sites. Possums in the mangroves are offen found with wounds and it seems that they may be subordinate individuals. forced out of the woodland by bigger. more dominant possums into the suboptimal mangrove habitat.

In July 20102. a prescribed fire burnt half of my study site. Luckily I was able to move all the equipment out in time, and all the possums were present and accounted for after the fire. It seems they probably sheltered (or slept!) in the rock erevices during the fire. Interestingly: in the following months. many new individuals moved into the burnt area. indicating that pertaps the fresh growth of vegetation had made the area more attractive to dispersing posismes. On a less happy note. carly in 2ont 1 found one of my vearling females, number +563 . dead on the road Unfortumately. road tratfic accidents are
probably a fate that befalls mame of the possums on Magnetic Island.

Apari from having a girlat time (on a tropical island studying a wonderfully charismatic amimal, what use was my study in a wider context? The (ommon Brushtail Possmm is vers similar. in terms of its ecology: to other medium-sized arthoreal marsupials that are less common, such as the closely related Moumtain Brushtail Possum (Trichosmras amminghami) and Shortcared Brushatal Possum (T. ciminus). both of which have patchy distributions, and the threatened Western Ringtail Possum (Pscudocheirus accidenwalis). This means that any factors that have a negative impact on the reproductive success and population growth of Common Brushouils are also likely to have an amplified effect on similar. but less adaptable. species. The Common Brushail can therefore be used as what is known as an "indicator species". For example, information on how the presoribed lire affected the Common

Common Brushtail Possum

Trichosurus vulpecula

Classification

Family Phalangeridae.

Identification

Characteristic 'bushy' tail; $1.5-3.5 \mathrm{~kg}$ (smaller in tropical north, larger in temperate south); fur colour varies from orange-grey, silver-grey to mostly black.

Habitat and Distribution

Once widely distributed across most of Aust., now absent from large parts of arid, semi-arid and tropical woodlands and thought to be declining in other parts of WA, Cape York Peninsula and NT.

Diet

Mainly folivorous, yet will eat almost anything. Eucalyptus leaves can vary from composing up to 95% of diet to being almost absent. Also commonly eats flowers and fruits.

Reproduction

In warmer areas where food available all year, can breed year round, with birth peaks in autumn and spring. In colder, more seasonal southern areas, most births occur April-May or May-June. Litter size one, twins rare. Some females produce 2 offspring in a year, in autumn and spring.

Brushtail population on Magnetic Island can be incorporated in future fire-management plans in areas where more endangered marsupials occur.

More directly, the results of my investigations into the reproductive strategy and success of Common Brushtal Possums on Magnetic Island an be used in management phans to help cradicate the spectes fom New Zealdmd. Common Broultails were introduced to Netr Zealand in the 1 solos to establish a fur trade and hate since become a huge pest by defoliating valuable matie forest and impacting on the fragile New Zealand ecosystem. With its high population density and scarcity of predators and competitos, the Magnetic bland population secmes to expentence conditions more similar to introduced por-

sum populations in New Zealand, than to other Australian mainland populations

Finally: if the worving decline of Common Brushtails in many parts of Australia continues, the results of me study will be useful in securing a safe future for these populations as well. \square

FURTHER READING;

Isulde, I. L.. 2 2()O.5. Life listor)' and demoerraphics of all island possium. Aust. I. Zool. 5.31.3): 195-20.3.

Istuc, I. L. \& Johmson, C....., 2(1) 3 Scexnld dimorphism and symelrontr of brecding: Pariation in polpesyny potential among populations in the common brashtail possum, Trichosurus vulpecula. Behav Ecol. 14: 818-822

Istac, J. L., Krockenherger, A.K. \&̇ Jolmson, C...., 20)(15. Adaptive sex allocation in relation to life-hisisory' in the commmon brushtail possum (Trichosurus vulpecula). I. Anim. Ecol. 74: 5.52-5.58.

Montalue, T.L., 2()()). The brushtail possum: biology, impact and management of an introduced marsupial. Mannaki Whemma Press: Nem Zealand.

JoanNe IsaAc: REGENTIY (ombletel) her P'h.I). at James (ook UnIDERSITY. Townsvilli. HER stulsy bocusfir) (IN THE: IIF: HISTORY ANID REPRROIUC(TIN: success of the Common Breusitiall Possum on Maginetic Ist ANI).

An adult male Common Brushtail Possum in the typical rocky habitat of Magnetic Island.

ONe of the joys of the bush is experiencing the peace and quiet at might. broken only by the occasional shriek of a nocturnal animal. Thank heavens I don't have ears like a bat. I think to myself. When I reach down and turn on my bat detector, the silence is suddenly filled with a cacophony of sound. The bat detector has converted the ultrasonic (high-frequency) calls of bats into a frequency that humans can hear: that is, below about 2) kilohertz. Although normally inaudible to us, bat calls are very loud with intensities over 100 decibels (the equivalent of a jet flying over at 300 metres). I'm grateful for my limited aural senses.
Small insectivorous bats (suborder Microchiroptera). while not blind. usually have tiny eyes and so don't see fine detail. Instead, they perceive the world in sound. Ultrasonic calls are mostly made in flight. with some bats emitting sound through their nose and others through their mouth. Returning echoes of this sound are received by sensitive ears and used to form ann image of the bat's surroundings-hence the term
echolocation.
But bats do more than just perceive their surroundings with sound. Their echolocation system is sensitive enough to track and hone in on the movements of tiny insects. for some bats even in areas tangled with vegetation. To bat biologists, vegetation or other obstacles that impair a bat's ability to hunt is termed clutter. because it produces unwanted echoes. The level of sophistication required to tease out the movement of small prey from the clutter is mind-boggling.
A spectacular example is when some bat species use Doppler shift to assess distance from an object. Doppler shift will be familiar to most people as the effect noticeable when an ambulance siren rapidly approaches and passes. As the siren approaches. sound waves bunch up, which means the sound rises in pitch or frequency. When the siren passes. the sound waves spread out and we perceive a drop in frequency. To be able to make use of Doppler shift. bats need to produce a constant frequency of sound. This is exactly the technique used by horseshoe bats (family Rhinolophidae). for example. They emit
calls of constant frequency (tone), lasting up to 80 milliseconds, and are able to judge the closing distance to their prey by calculating the degree in frequency shift of the returning echoes. Constant-frequency (C.F) calls are especially useful for detecting prey in clutter because returning echoes from flutering insects contain a peak in amplitude that is absent from background cluter echoes. The bats sensory system is sensitive enough to detect these minure acoustic glints.
The individual pulses of ultrasound produced by most other insectivorous bats are not of constant frequency but sweep from high to low, like a chirp. These bats are often referred to as 'fre-quency-modulated' (FM) bats. This system is well suited for accurate localisation of targets, because the rapid sweep in frequency provides a spectrum of sound that delivers time markers to fre-quency-sensitive auditory neurons. Bars use the time delay between the emitted signal and returning echo to estimate

Harp traps set on forest tracks can be effective at capturing large numbers of microbats. Such tracks provide ideal habitat for many species of clutter-sensitive bats.

The Eastern Falsistrelle (Falsistrellus tasmaniensis) is clutter-sensitive and so spends much time cruising back and forth along tracks or natural gaps in
the forest.

the speed and direction of their prey. The bats also dymamically alter the number of pulses emitted per unit time. from one pulse per wing beat (ustally about 10 per second) while searching or cruising. up to 2(0) calls per second to ensure precision when finally attacking an insect. It is truly amazing that they detect their small flying targets at distances of just one to five metres. leating themselves only a fraction of a second to adjust their flight and intercept. Unlike CF bats. most FM bats, however. have a limited ability to detect prey in chatter. becanse prey echoes are masked by background echoes.

Bats as a whole are an incredibly
diverse group, with about 1.0 ore species worldwide and about e() species in Australia. (Of the Australian spectics, they range in size from the Little Forest Bat (Despadtlus vulurmus). which at just three grantis is Australia's smallest mammal, to one of the world's largest microbats, the 1.50 gr.mon Chost Bat (Macroderma gigas). Although bats are very diverse. we can learn much about the ecology of individual species by studving their call type and trequenc: This is becaluse lowfrequency somads travel long distances. but do mot have very good resolving power for discriminating small flying objects. The reverse is the case for high-frequency solund. which cant travel far through air due to

The constant-frequency call of the Eastern Horseshoe Bat (Rhinolophus megaphyllus) is emitted through its intricate nose-leaf. It is able to judge distance from its prey using the degree to which the frequency of returning echoes are Doppler shifted.

atmospheric attemuation
The White-striped Free-tail Bat (Tadarida arstralis) produces low-frequency calls ($10-1.3$ kilohertz), making it one of the few bats audible to us. Not surprisingly: it flies and hounts in wide open spaces where large objects can be detected at relatively long distances. This bat has long marron wings that allow it to fly fast. satrificing manoeurrability: but suiting it to flight in open areas. The Colden-tipped Bat (Kernould papuensis) is at the other end of the prectrum. It is Australiais only bat to spechalise on a diet of spuders. Thes requires an ability to detect that finest of structures. spider silk, tepically in areas of

dense vegetation where spiders and their webs are common. Its call has both a very wide freguency range (sweeping from 150 down to 70 kilolertz) and very short duration (one millisecond or less). Although FM bats are not suited to detecting prey in clutter, it is thought that the mique call characteristics of the Golden-tipped Bat emable it to discriminate small objects at close range. This would seem to be possible only at slow speeds and indeed Golden-tipped Bats have short broad wings giving them great manoenarability at slow specd...apparently just what you need if you are hunting for spiders in dense vegetation.

WIHIE AIL (O THIS IS FASCINATIN(; stuff. my real interest in bat echolocation relates to understanding how different species use the ir habitat and how bats respond to habitat change I have been researching such matters for the past ten years. with a particular interest in the hathitat requirements of different bats and their response to disturbance from logging, fire and weedinfestation in bushland. The field ecology of microbats is poorly known because bats were put into the too-hard basket until relatively recent advances in technology (including the bat detector) came about. Yet there is a compelling need for this work as bats are an impor-

The White-striped Free-tail Bat (Tadarida australis) is notable for producing an echolocation call audible to humans. Such a low-frequency call is suited to foraging in open areas, usually above the canopy of forests.
tant component of a functioning ecossstem, representing up to $\overline{0}$ o per cent of native mammal species in some forests and even more in degraded landscapes. The conservation status of bats is also not good, with 16 species listed as threatened in New South Wales.
Researching the response of bats to changing forest structure began for me in the forests surrounding Eden in southern New South Wales. I decided to use bat detectors to record and iden-

Weighing as little as three grams, the Little Forest Bat (Vespadelus vulturnus) is Australia's smallest mammal. It is abundant in many habitats throughout south-eastern Australia.
tify the ultrasonic calls of flying bats in forest that had regrown for 20 years after logging compared with adjacent patches of unlogged forest. I wanted to know to what extent different species would use patches of regrowth when there was unlogged forest nearby. With the help of research assistant Mark Chidel. we surveved eight blocks each of mature and regrowth forest and. back in the lab, identified over 2.20) call sequences to 11 different species. Although bats were using the regrowth, activity levels were only half of that in unlogged forest. The main difference between the two forest age-classes for a foraging bat was that the regrowth was still in a very active phase of regeneration and so the vegetation was very dense. Different echolocation abilities and wing shapes seemed to constran where certan bats could forage

Some species used the regrowth as much as the monlogged forest and these species demonstrate another distinct adaptation for feeding in clutter. Longeared bats (. Notophilus spp.). for example. have short broad wings that allow manoeuvable flight and a sweeping call begimning at high frequencies that provides the semses with detailed information (high resolution) for foraging in clutter. In marked contrast to the (iold-en-tipped Bat. long-eared bats don't need to echolocate when detecting prey: instead they use their 'big cars' to
listen for sounds generated by the prey themselves. This not only avoids masking of prey echoes by background echoes, but is also probably an adaptation to deal with insects that are capable of eavesdropping on bat ultrasound-an example of an evolutionary arms race.
Each might we also set harp traps on trails (dirt access roads) throughout the forest. These traps, which are spectally designed for catching bats. consist of a frame with two banks of vertical fishing lines, each line separated by about two centimetres, and a collecting bag at the base. Interestingly, our harp traps caught large numbers of bats using the trails in both the regrowth and unlogged forest. Could it be that trails represent grood habitat for bats in forests and allow them to better exploit dense regeneration:
We set out to explicitly look at the use of trails in northern New South Wales where the vegetation is even denser than in the south due to the presence of rainforest species in the understorey of wet sclerophyll forests. Our studys site was located in Chichester State Forest, near Barrington Tops, and we used the bat detectors to survey areas of mature forest and also areas that had been logged 16 years carlier. After collecting and analysing more than 3,7010 calls, it became pretty clear that most bats didnit like to fly in the dense vegetation that typifies a forest regenerating after logging and the rainforest under-
storey of unlogged forest. But they were not averse to flying and feeding along tracks and trails that pass through both dense regrowth and monlogged forest. To a lesser extent bats also used the creeks as flight paths, although the ones we sampled were relatively small and cluttered with overhanging vegetation. Some of the bats that don't mind flying in dense regrowth, such as the Goldentipped bat, call too softly to be recorded with our bat detectors, so we still have little information about how they respond to changes in vegetation structure.

THERE ARE ()THE:R FACETS TO THIS story we have been exploring. If trails are prime bat habitat in forest, because they provide a long strip of open space adjacent to an edge, could the space above and below the canopy represent another such edge? Maria Adams is a Ph.l). student who is interested in the dizzying heights of the forest canopy: She has been using bat detectors suspended at different heights within the forest to record activity levels of both bats and their insect prey. Traditionally: most bat workers have angled their bat detectors up from the forest floor. While this does a reasonable job of recording bats that normally fly above traps. no-one really knows how many are missed and which species like to fly in the canopy. Maria is working towards answering this question for forests with a range of disturbance histories.
Also, bow important are larger. more open crecks as flyways and foraging habitat for bats: Anna Lloyd has recently completed her Honours degree on this topic by surveving streams of different sizes. She found that bat activity increased as stream size increased, which corresponds to the width of the stream and associated decrease in clutter. But rather than a gradual change. Anna identified a theresold where a flyway needed to be of a minimum size to support high bat activity: This was about 1.50 symare metres as measured in crosssectional area; something like a small +WO) dirt track. Because bat activity over creeks did not differ betweetl recently logged forest and mature forest. the results indicate that protection zones
around creeks in New South Wales State forests are effective in manaming edges and hence bat activity after log－ ging．

These studies provide smapshot pic－ tures of how bats use their forest envi－ romments．（iiven that forests are such long－lived ecosystems，we have intiated long－term studies that delve into the denamics of population changes over time．Nevertheless．we now know that trails and open creeks are incredibly important habitat for many bat species． especially where they pass through dense vegetation．It appears that clutter from dense vegetation places a real limit on where a bat is capable of foraging
So the next time you find yourselfon
a + WI）trail through dense forest， remember that walkers and fire fighters arent the only ones to use such tracks． Bats need them too and，without them， there would probably be a lot fewer to grace our skies at might．\square

FURTHER READING

Кル！に，TH．\＆゙ Fenton，M．B．，2003．Bat ecology．University of Chicago Press （hicagro．

Law，B．S．E゙ Chidel，M．，2（））2．Tracks and riparian zones facilitate the use of Australian regrouth forest by insectiveroms hats．J．Appl．Ecol．39：6（1）．5－617．

Pemma），M．，20（0）Key to bat calls of south－east Queensland and north－east New South Wales．Forest Ecospstem Research and Assessment Technical Paper 2001－（1）7．Department of Natural
Resources and Mines：Zueconsland．

Schnitzler，H．U．，Moss，C．F：\＆
Denzinger，A．，20（）3．From spatial oricmtation to food acquisition in cecholocating lats．Trends Ecol．Evol．18： 386－39t．

Dr Braidey Law is a Senior Research Scilentist with Science ani）Researcil．New Soutil Wales Department of Primary INIJUSTRIES．

Big ears hear it all．Gould＇s Long－eared Bat（Nyctophilus gouldi）listens for sounds generated by its prey．However，it still echolocates when navigating through cluttered vegetation using a sweeping call beginning at high frequencies．

S() RUDIMENTARY IS OUR KNOWLEDGE OF the Common Wombat that even its sex life WAS A COMPLETE MYSTERY UNTIL RECENTLY.

WOMBAT SEX

BY CLIVE A. MARKS

WHIIE MORE: NUMEROUS than the other two species of wombat, the title of 'Common Wombat is nonetheless undeserved. It suggests that the biology and behaviour of this species is well known. yet this is far from the case. So rudimentary is our knowledge of the Common Wombat (Iomblums usimus) that even its sex life was a complete mystery until relatively recently.
But in an obtuse if not flippant sort of way: Australims have always mursed a fascimation for the sex life of wombats. If only lid been given a dollar every time I was asked the question: "Is it true that a wombat eats, roots and leaves?" Vet until recently there were no recorded observations of courtship or mating in wild wombats. Obviously a comprehensive answer to this question was impossible!

A LOVE BITE

with chisel-like

incisor teeth is
the type of foreplay that removes hair and punctures skin.

In Australia, while some instances of copulation and 'mock' copulation during "play' had been observed in captive wombats. there were no documented chams of successful breeding. Lack of knowledge about the structure of wombat burrows, and few attempts to construct appropriate artificial burrow enciromments in captive situations. seemed to contribute to their poor cap-tive-breeding success. This, and the fact that neither courtship nor copulation had been seen in the wild. led biologists to suspect that mating may occur within the burrow. Such a creptic and apparently dignified strategy may well have appealed to earlier naturalists who were imbued with a sense of Victorian modests:

Attempts to mate wombats in captivity were often conducted with some trepidation, antway. Frequently: newly introduced wombats were quickly separated as sextal interactions became quite aggressive. The male would attack the female, vigorously biting and raking her hindquarters. A love bite with chisel-like incisor teeth is the type of foreplay that removes hair and punc-
tures skin. Sometimes the female would ardently resist with the sort of backward kicks that would send a Sumo wrestler flying. It was suggested that in the wild, the amorous male would have to trap the female within the contines of the burrow in order to have his wicked way with her!
lust as some people become more sexually liberated when travelling

abroad. so too it seems do wombats For it was in the Cerman city of Hannover that the first successtul captive breeding of wombats was recorded. In fact, careful observations at the Hannover Zoo gave the first inight into the breeding and subseguent growth and development of these Australian tourists. With absolute precision, details of the wombat's sex life were recorded
and. surprisingly. it seemed anything but modest. It appeared to be a phosically demanding process complete with chasing. biting. grunting and loads of heavy breathing. But why had this display of uminhibited lubricious behaviour never been recorded in Australia befere: (Caprevity can affect the behaviour of animals. sometimes quite substantially: and observations of wombats

The Common Wombat is an iconic Australian marsupial, yet even basic details of its sex life have remained a mystery until very recently.

in a German zoo were not necessarily thought of as being 'typical' of treeranging wombats in Australia.

I1 Was as late as lg90 that observed and filmed Common Wombat courtship and mating at Tonimbuk Farm in Victoria. This 35minute sequence of infra-red footage gave the first insight inte their far-fromcommon sex life back home. Mating as seen in captive wombats, occured dhope ground with both wombats lying on their sides. The female. after a prolonged period of copulation in the same position. broke away and began to trot in a pattern of circles and figures of eight. The male chased her. following closelv behind, and then bit her on the rump. She immediately stopped just long enough to permit him to roll her on her side and begin copulating agan. If the male was slow to mount. she would kick back aggressively and not let him roll her on her side again until she

CLEARLY, IN ORDER TO do the 'wild thing', wombats seemed to need loads of space.

had run round in more circles and figures of eight. This happened seven times. Clearly, in order to do the 'wild thing . wombats seemed to need loads of space. I wondered if captivity was cramping their style.
The events recorded at Tommbuk very closely matched the observations in Hamover and did suggest that mating was not restricted to the burrow: Furthermore, they contimed courtship and mating behaviour in (ommon

Courtship behaviour in the Common Wombat. The male chases the female in circles and figures of eight, trying to bite her on the rear. If she's ready she will allow him to flip her on her side and mate, after which she gets back up and the chase-and-mate sequence continues several times.

Wombats to be a very phesical and almost violent affair. The male biting the female appears to be nomal and no doubt accounted for some of the sarring and hairless areas often seen on wombat rumps. The observation allow us to epeculate whe capteve matimg mely resule in aboomally angressice encounters. If the female only permits mounting after a "chase". small pens man prevent this. If the male use a bite on the hom" as a cue for her to stop and permint mounting. it is possible that an rexulat encounter will result in escalating aggression without copulation takin! place is the female has hetle vace to perform her hard-to-get behaviour: In

this scemario, typical conditions of captivity may be inconsistent with the requirements of this species to breed. In the Hamoner Zoo, the wombats were permitted the free rum of the large elephant and thinoceros enclosure at might so open space was not an issue
Shortly atter seemg some film footage of wombat courtship and mating. Androos Kelly at Trowuma Wildlife Park. Tasmania, was detemined to sexualle liberate his wombats. He had seen the signs of wombat sexual frustration before, resulting in a well-bitten Female that did not fall pregnant. ()n the next occasion that he saw signs of wombat love. he released them from captovity
into the grounds of the park. With freedom to lead the wombat dance d'amour', the female permitted copulation and Androos sate the same sequence of behaviours as documented in the film. He also found a pouch young some months later?
Carriona MacCallum at the Western Plain Zoo in Dubbo has probably had the most spectacular wombat breeding success of all. Joining and modifying the pen sestems to permit a chase she not only found that wombat beedeng was pessible in captivity: but she found herself with the first recorded case of wombat twins. Perlaps sometimes. a change is as good as a holiday!

Because of its burrowing habits, wombats possess a backward-opening pouch-a great vantage position for a well-developed young and a way to ensure that you are out of the way during serious earth moving!

As the Common Wombat is increasingly hedd in captivity throughout Australia, there are compelling reasons to find out more about this cryptic marsupial. Let not the label "common" deter us from this task or, worse still, lull as into a complacent attitude when it comes to the conservation status of this wombat. Habitat fragmentation increasingly impacts upon its populations. I hope that it will never be the task of any future biologist to more fully elucidate the sex life of the 'Uncommon' W'ombat.

So, 1 an finally able to answer that great Australian wombat sex conundrum, but with an unexpected feminist twist. For it seems that, in the wombat dance of love, it is the female wombat that calls the shots: and cats, roots and lanes!

FURTHER READING;

Böer, M., I998. Olsermations on reproduction in the Common Wombat (Vombatus ursimus) in captivity: Pp. 129-146 in Biology of wombats, ed. ly R. T: Wells and P. Pridmere. Surrey' Bealty' and Soms: Chipping Norton.

Being the largest burrowing herbivore, it seemed probable that Common Wombats would mate within the confines of their extensive burrow system. But they turned out to be less modest!
 conrtship) and mating in the frec-rangings Comman Wombat (Vombatus ursinus) 1p.12.5-128 in Biology of wombats, cod. Ij R I Wells and P. Pridmore. Surre) Beatly' and Soms: (hippings Norfon.

Tirges, B., 1988. The wombat: common wombats in Australia. New South Wiales Limiversity Press: Kemsing!on.

Woodford, I. 20) (0). The secret life of wombats. Text Publishing: Mellourne.

Clive A. Marks is Direcotor of
Noc:turnai W'iliolife Restarch PTy Itio in Victoria. He has a ION(;-STANIING $;$ INIERESI IN THE E(olocir ANI) (ONSERVATION OF THE Commion W'ombat, anl) PARTICUIARIY THE RESOLUTI(ON (OF LANIDHOIDER CONFICT WITH THIS SPEC:IES.

Common Womhat

Vombatus ursinus

Classification

Family Vombatidae.

Identification

Large, generally nocturnal burrowing marsupial with squat, round body and course pelt that varies from black, chocolate brown to blonde. Can grow to over 1 m in length and over 35 kg (mean 25 kg) in weight. Distinctive cubeshaped droppings.

Habitat and Distribution

Alpine forest, heath, coastal scrub and open forests with suitable burrowing habitat and forage. Once more widepsread across south-eastern Aust.; now largely restricted to Tas., and highlands in Vic. and NSW, extending to south-eastern Qld border. Patchy populations in western Vic. and eastern SA.

Biology

Diet of grasses, herbs and sedges. Digs a number of large burrows, some up to 30 m in length. May move many kms in an evening. Births occur at all times of year, almost always with single young.

Longicorn beetle Piesarthrius sp.

Insect Gallery

menumasem

Emperor Gum Moth (Opodiphthera eucalypti).

Sparring male Golden Stag Beetles (Lamprima aurata).

Sairming fleshy tentacles of doom

The Star-mosed Mole sees its world through pink-coloured tentaces.

THI: HTVI) I. THI: HILIOHS OPENS with the Rat taking his triend and fellow rodent the Mole on a piconc to the riverbank. Mole umpacks the fat, wicker luncheon-basket on a tablecloth and spreads out a number of small mysterious packets, which the Rat has explaned contain food much loved by Moles. When it was ready the Rat sad. "Now, pitch in, old fellow!" and the Mole mowrapped the food and began to eat in a mamer befitting a talking Mole bestowed with English manners and picnic etiguette. However, if the Mole had the eating habits of a Star-nosed Mole, most of the food would have been eaten before the Rat drew another breath.

The Star-nosed Mole (Comd)lum erisfata) has a soggy, subteranean lifestyle in marshes and wetlands from Canada down through the north-eastern United States. Coated in waterproof black fir and having heavily clawed forelimbs for digging, it blindly burows through the damp soft soil and feeds on the abundant worms. small insect larvac and other tiny ammals it comes across. As its name suggests it has a nose that looks like a star. but this is a rather bland description of what is the most extraordinary-looking sense organ. Tiwenty-two-tentacled ()ctopusnosed Mole would be more apt.

Surrounding the nose is a fleshe array of 11 pairs of finger-like tentacles that are splayed across the mole's face. While some of us see the world through rosecoloured spectacles. the Star-nosed Mole sees its world through pinkcoloured tentacles. These squimming tleshy tentacles are packed with 25.(o)(1)
touch receptors that send infommation via $10(1,0)(0)$ nerve fibres to the moles bram. For us this would be the equivalent of having the sensitivity of our entire hand magnified six times and then concentrated into a single finger tip.

And what does the Star-mosed Mole do with all this information rushing to its head? When the tentacles of doom touch something that may be worth eating the mole brings its lowermost central pair of tentacles into contact with the pres: These super-sensitive tentacles allow the mole to make even more precise decisions about what to do next. and if the bran says "Eat", the prey becomes fast food: really fast food. From the moment the mole finds prev: moves to preve decides to cat preve grabs prey. bites prey with its tweezer-like teeth and swallows prev, it takes just over one-fifth of a second.

Kenneth Catania and Fiona Remple at Vanderbilt University in the United States have foumd that the Star-nosed Mole is the champion of mammalian cating competitions. Using a highspeed video camera to film the mole's feeding behavour. they found that it could eat ten mouthfil-size preces of earthworm in 2.3 seconds or $(1.2 .3$ see onds per piece. Although the structure of the star, and the fact that a large part of the moles bram is dedicated to processing information it receives trom the star, was already known from earlier studies. the actual speed at which it could literally mbale food was unknown. Their results also suggest that the mole has pushed its bram and nervous system to its operating limits for

moving quickly and processing information coming from the star. So it is not surprising that the moke often makes mistakes and misses a bit of food and then backetracks to make the right decision.

What are the adrantages of super-efficient feeding? It seem inturive that in temens of time and energy spent forasinge, it is cheaper for a large predator to catch one prey that werghs 100 kilograms tham to catch lot) prey that each weighs one kilogram. However. if the predator expends very little enerey locating each prey item. then it could survive on a diet of small ammols. Cataniat and Remple stegerest that the sta evolved as an adaptation for high-ipeed feeding when the ancestors of statnosed Moles first moned monto wethand

By evolving an expuisitely sensitive appendage with its large surface area and flexible feelers. the Star-mosed Mole could make an efficient living by finding very small prey very quickly. In fact, the researchers have calculated that the size and mobility of the star allow the mole to find $1+t$ times as many small prey items in a given time compared with its close cousin the Eastern American Mole (Scalopus aquatious).

The Star-mosed Mole is the only mole to have evolved such an claborate and delicate star. This may be because its fleshy muzzle is less likely to be damaged as it is pushed and shoved through the dann soft soil found in wetlands. unlike the drier soil of other mole habitats.
When Kemneth (irahame's Rat tells the Mole what food is inside the wick-
er basket. the list of goodies rolls off his tongue so puickly; it is easy to imagine that he was actually treing to whet the appetite of a Star-mosed Moke. ".What's inside it?" asked the Mole. wriggling with curiosity: There's cold chicken inside it. replied the Rat briefly: coldtonguecoldhameoldheef-pickledgherkinssaladfenchollscress-sandwichespottedmeatgingerbeer-lemonadesodawater- - () stop. stop: cried the Mole in ecstasies: "This is too much!'" However. life is no picmic for the Star-nosed Mole as it races against time to find womsinsectlatacorus-taccanstins-insects...

FURTHER READING

Citania, K.C. EンRemple, I:E., Z()) () Factile fonestion in the star-mosed mole.

The super-sensitive fleshy tentacles of the Star-nosed Mole.

Brain Behav: Evol. 6.3(1): 1-12
C.atumia, K. C. \& Remple, I:E., 20015. As jumptotic prey profitability drives starmosed moles to the foraging speed limit. Nature 4.33(7)25): 519-52?

Grahume, K., 1908. The wind in the willows. Penomin Books: Lad.

DR SIMON I). P(OILARD) IS CURATOR OF INVERTI:BRAIE Zoolociy AI (Anterbury Museum, ani) a
 Bulogoilcal Scifnces at the University ol Canterburr, in (hiristchurchi. New Zealand).

Naked apes letting their hair down

We are not so maked that we won't was or shave to improve the look and feed of even the mose hard-ro-reach places.

F
 just for a moment. The rest of our body is as hairy as the next great apes, at least in the number of folllicles per spuare centimetre. Humans. with dense, fine. short hairs, just look maked. so we can rightly be called "naked apes'. or "third chimpanzees', or even silverbacks (Comillas aren't the only males to get long grey hairs on their back as they get older!).

Although anthropologists tell us we look maked, humans, it seems, can't get maked enough! We are not so maked that we won't was or shave to improve the look and feed of even the most hard-toreach places. There are 14 pages of beauty salons in the Sydney Yellow Pages, most offering wasing services for just about everything-evebrows, upper lips, legs, backs, ampits, crotch.
()n top of all this fuss over unsighty body tufts are beards and head haire Fashion, health and even religion have a big impact. The Taliban (Islamic rulers of Afghanist.m 199(-2001) bammed shaving, and decreed that beards be longer than a man's fist. Barthers have since re-opened to high demand. But you don't have to be an lshanic fundamentalist to realise that we pay close attention to removing facial hair. Barbers and hardessers command over 1.5 pages in my phone book, responding to demand for frepuent trims and hairstyles to enhance facial attraction and to send out the right kind of signalswhether youre a job applicant, intellectual. company director, or lover.

Charles Darwin comsidered many tangled arguments about why hair is
different on men and women, and why all humans have a mat of hair at the functions of the limbs and torso. He wondered too if reduced body hair was maturally selected to free humans from ticks and other parasites. but thought this unlikely because he was maware at the time of any specific adaptations for removing parasites in other relatively hairless. tropical landlubbers (elephants and rhimos). Nor did the loss of human hair to regulate body temperature appeal much to 1)arwin because it doesnit really explain retention of our head hair, most exposed to the sum. Darwin favoured sexual selection to explain different head and face hair on men and women.

Mark Pagel (University of Reading) and Walter Bodmer (Oxford University) combed new threads into these theories. They too rejected the hairless. bipedal, body-cooler argument (maked shin gains too much heat during the day and loses too much at might). And they doubted the "apuatic ape theory", which purports hairlessmess to have evolved during an aypatic or semi-aquatic phase of human evolution-the fossil evidence is just not convincing. They rection that sexual selection could well explain human retention of face head and pubic hair. but that relative hairlessness elsewhere on the body was largely. driven by advantages conferred by eliminating ectoparasites like fle as and ticks. 1)arwin was wrong. A tendency to hairless and tick-free skin could easily hawe sparked a selective advantage through lower infections. which then kicked off the whole process of choosing mates
that advertised clean skin ("Look! No tleas!").

The oldest hairdos depicted archaeologically were once thought to be on 30,(0)(1)-year-old Vemus figurines from Western Europe, but it turns out that these carvings are probably woven hats (see "Stone Clothes", Nature Aust. Autumn 2(0)1), and thus the earliest evidence of covering up, if not removing, hair! (ienetic studies of lice take us further back, and indicate that the Human Body Louse, which lives in clothing and only feeds on the body, evolved $5(1,0010-1001,0100$ years ago, presumably when we started wearing layered clothes (see "Lousy Clothes", Nature Aust. Winter 2(0)-t). So we must have been 'maked’ at least since modern hunters walked-not streaking but dressed to kill-out of Africa. Mavbe other early humans were a lot hairier. Could this explan the scant evidence of human interbreeding with hairy, cold-adapted Neanderthals: Perhaps they were just too flea-ridden and ugly. Could it explain Neanderthal extinction through infection:

Human retention of hair in or on the nose. ears. armpits, chest, genitals and other remote locations usually has a functional explanation. Hairs might be filters, cushoms, sigmals of sexual maturity, or pheromone dispensers. Pluck some hairs from different parts of your body and have a sniff. Twirl them around. Pubic hairs are coarse and curly with an irregular diameter. which is handy because it means they cant get matted into dreadlocks when you walk to work. But human head hair stands up in a world of its own. How come head hair is so much longer than everswhere clse:

Norbert Mesko and Tamas Bereczeci (University of Pécs. Hongary) suggest that long hair is linked with reprotuctive success. They tested several possible functions of long hatr: to cover up or draw attention away from lew attractive (more masculine) p.res of the face: to advertise absence of parabtes, assuming only individuab free of infection can afford to grow their hair long: or to send a "costly signal" (like a peacocki tall) to adsertise good genes. They got mak subjects to examine computer images of six hairstyles (short, medium. lons.

A Hindu Sadhu (holy man) from Kathmandu, Nepal. Long hair means different things to different people.
dishevelled, bun, and unkempt) on a set of female faces and to rank the effects of these hairstyles on attractiveness (femiminity, youth, health and sexiness).

The results showed that unkempt or disherelled hair. which might indicate parasites, has little impact on attractiveness. but that hair length is a pretty good indicator of general health and. prestmably, genetic quality: Long hair certamly costs a lot in terms of production (head hair consumes more energy: grows faster and is shed more rapidly than body hair) and daily maintenance (long hair takes more time to care for than short hair). Harstyle, particularly medium and long hair, is very important in enhancing attactiveness. whether you have something to hide or not. Longer hair makes less attractive women look more femmine and
healthy: while it makes more attractive women more feminine and sexy: (obviously this study might only be true for a limited range of female hairstyles and for certain cultures. but the basic message probably holds: long hair will impress your mate, because to afford the costs of production and maintenance. youle got to have good genes. The next plan is to see how men make the cut, and what women want.
I read somewhere that transplanted pubic hair (that is, adding to it, not removing it) is becoming trendy in South Korea, but I cant see it catching on as a surgical cure for baldness in the West. Still, with all this artificial adding and removing, its hard not to think that its the end of evolution for human hair. The medium (hair) and the message (mate with me) might be the same, but

What you see (or don't see) is no longer what sou get.

FURTHER READING;

Paged. M. EF Bodmer, 1:. 2003. A maked ape would hate fencer parasites. Proc. R. Soc. Lond. 13 (Suppl.) 27():
SIIT-SII9.
Mesko, N. E゙Berecaker, T., 20) 1 -
Hairstyles as an adaptive means of displaying phenorypic quality. Human Nature 1.5(3): 27-46.

1) R RICIIARU FUllagiak is AN Honorary Research Associate in Arcilameolocory at the University of Syinney. He is DARTICUIARIY INTERESTEI IN AR(:IIAEC)I()CIC:AI IND)ICATORS, ()F IIUMAN BE:IIAVIOUR.

Immortal plants

A tree can be vicued as a chose-knit colon' of many' individuals, and this wolon' has the potemtal to live forever:

IWAS BOTH SHOCREI ANNI AWEI) BY the ideas offered by French tropical botanist Francis Hallé in his wonderfully titled book $1 n$ praise of plants. I was certamly amused and captivatedit's a fascimating book. Halle is particularly keen to show that most amimals and plants are fundamentally different, and that we cant simply generalise from what we know about amal biology to plants. To me delight, Hallé also concludes that plants are fir more interesting!
One of Hallés key concepts is that a tree can be veewed as a close-kint colony of many individuals. rather than a single organism, and that this colony has the potential to live forever. What he means is that there is a repeated pattern. and cach unit can continwe to grow (whether part of the tree or as a culting or graft) as long as it contains a bud. The bud. according to this interpretation, can be comsidered the true individual-it c.mnot be divided any further. (Even if we use genetic uniformity to define an individual. in a long-lived tree a slow build-up of mutations in vegetative cells can result in some banches having a distinct fingerprint.) So a tree is like an ant nest or sea anemone: individuals die. but the colony persists.
Apart from providing an interesting lingustic or philosophical exercise does ame of this matter: It does if you comider colonial organisms to be, to all intents
and purposes, immortal. Clearly most trees are mortal: Australian wattles tend to flourish and die within a decade or two, and even our most majestic street trees have a maximum life span of one or two centuries. Structural problems develop. Food and water supplies can't be guaranteed. Fungal pathogens someWhat short-sightedly kill their host. Winds blow them down. And so on
In fact, the longest-lived plants are not the grand trees. Granted a Bristlecone Pine (Pimus longuer al chopped down in Califormia in leot, is often cited as the oldest tree. It was just under 5.0 one years old when felled, although there are claims that other individuals of this species are s.ono years or more old. And a massive Huon Pince spread over 2.5 hectares (the size of a city block) in the Mount Read area of Tanillania, is estimated to be about 10.0100 years old. but there is some debate over whether to call this an 'individual' tree or a colony of clonest
If we accept Hallés bew that most plants are colonial anyway: we shouldnt care tex much if trees like the Huen Pince survive only because they spred vegetatively at their base bey producing new stems to replace old (that is sucker or laver). This bring into contention the (reosote Bush (Larrat tridelthela) from (alifornis. now over 11.700 years old (see "The Lengthening Limits of Life". , , ithue Aust. Winter 1997). But this is a baby compared to a strange

BY TIM ENTWISLE

plant lurking in the Tasmamian World Heritage Area.
Some years ago. I took part in an Australian (eecographic-sponsored expedition to Bathurst Harbour in south-western Tasmania. While I was wading through tea-coloured streams searching for new species of red algae, Jayne Balmer (Tasmanian Department of Primary Industries, Water and Enviromment) Was collecting samples from one of Australias oddest. perhaps its oldest, and certainly one of its rarest, plants. A member of the family Proteaceac and closely related to warratahs (Tilopeat). King's Holly (Lormatial lasmanica) was first discovered in 193t by local identity Demy King. That plant is now assumed dead, but King found a second population, confirmed by Tasmanian botanist Winifred Curtis in I96.5. It looks healthy enough, extending along creck gullies for over a kilometre but none of the plants produces fruit or seed. (ienetic testing by Jasmyn Lynch (who works with Balmer) and colleagues from the University of Tasmamia showed no detectable variation across the entire population. This is usually good evidence of a regetatively reproducing species (although some plants that grow from seed may be genetically indistinguishable from one mother, such as the Wollemi Pine. and. like the branches on an old tree. vegetative off-shoots are not necessar ily genetically identical).

Microscopic examination aloo demonstrated that King's Holly has three sets of chromosomes. When it comes to chromosome numbers. plants do mix it up a lot. and multiple copres are not uncommon. But triploch. s they are called, are rare. In Lommation and in fact in all its close relatives. a double (diploid) set of I I chromonomes is standard issue. The fact that Kings Holly has 3.3 chromosomes explamed why it couldn't produce fertile seed-mplodd plants rarely find a way to oplit this odd number up and produce vable gameto (the reproductive cells that have a single or haploid set of chromonomes). Iti thought this odd set of chromosomes resulted from the succerstal Fertila aton of a treak diploid gamete. with a nor mal haploid gamete, many sear ago. Tioo plus one equals three!
Lynch and colleagues hypothernee that

King's Holly: part of a 43,000-year-old clone?
every plant in the one-kilometre stretch was once comnected, and that fire has probably fragmented the "clone". Based on a combination of its current extent. cartom-dated forsils, the lack of genetic diersity. absence of seed, and the unlikelihood of triploids occurring twice. they hypothesise that this clone max have started life over 4.3 .000 years ago. Hard to confirm, but a tantalising proposition.
A few thousand kilometres north. plant ecologist Rob Kooviman has discorered another long-lived clone. He suggests. provecativels. that the Peach Mystle (Uromprotus australis) in New South Wales's Nightcap Range is, at least functionally: an immortal plant. That is. in the right circumstances it could live for ever. Kooyman and his research supervisor Peter Clarke (Unirersity of New England) are still trying
to confirm the exact age and life history of this intriguing plant. Like King's Holly, the Peach Myrtle has found a way to survive without reproducing from seed. Each individual consists of a large group of stems up to 12 metres high. the biggest of which seem to be about $1.5(0)$ years old. The plant 'regenerates' itself by replacing old stems with new, and is likely to be at least 10,0000 years old.
The real stayers, however, are giant fingal networks said to be the largest living organisms in the world (see "Largest Living Organism", Nitture Hust. Summer (993-94) and possibly functionally immortal as well. Plenty of algace fungi. bacteria and other microbes reproduce almost exclusively by splitting in two (without any sexual fusionn) and you could describe their extended families as exceedingly old
but disjointed individuals. All this casts a dark shadow over the paltry efforts of most amimals. which at best live for a few hundred years or, if you are a sea anemone, a couple of thousand vears. Being a plant. or a microbe. las its benefits.

further reading

Hallé, E:, ZO()? In praise of plants Timber Press: Portand, USA and Cambrider, し

Lynch, A:II. Bames, R.W., Camberèdes, 1. \&- Vaillancourt, R.E., 1998. Genetic cridence that Lomatia tasmanica
(Proteaticale') is an ancient done. Aust. J.
Bot. 46: 2.5-3.3.
Dr Tim Entwishe is Executive Director of the Botanic: (farlens Trust. Syidney.

reviews

The Nature of Plants: Hahitats, Challenges, and Adaptations

By' John Dauson and Rob Lucas. C.SIR() Publishing, Collingurood, Via., $20(1) .5,31+\mathrm{pp} .564 .9 .5 \mathrm{mp}$.

B(O)KS IIKE TLIIS ARE USUAIIY WRITTEN BY AMERKCANS (OR EUROAPANS, ANI) THE TEXT ANI) illustrations invariably emphasise northern-hemisphere examples. What is refereshing about this book is that its authors hail from New Zealand, and their text has a strong Australasian flavour. Many of the plants they describe and illustrate come from New Z.aland, Australia and New Caledomia. As a detailed introduction to the world of plants this book is very good, and well pitched towards the categery of reader who enjous Noture Australid. In clear readable English the authors explain such phenomena as pollination and seed dispersal, and adaptations to fire, drought, cold, herbivery: and a life in water. The text can be read chapter by chapter, or be consulted when questions come up, such as 'How does sap rise?' The photos, mainly bob Lucas, are so outstanding that the book is almost worth busing just for these. The text appears to be pite hed to an intermational audience, but its New Zealand bias ultimately becomes a minor weakness, with too many New Zealand examples used to illustrate the concepts
-Tim Low

Seven Deadly Colours: The Genius of Nature's Palette and How it Eluded Darwin

T
 the result of the diefectionless lotery of evolution, and to them the eve is too perfect to have evolved by chance. (harles Darwin also felt the eve was perhaps too perfect for evolution, but as Andrew Parker explains in Seven deadly colours the eve is not quite as perfect as we tend to think

This book deals with the phesical aspects of colour, how it is 'made', and how much our 'perfect eves fail to see. While colour pigments are known to us all, what about structural colours, iridescence, and yellow fluorescence?

There is much fascinating information in this book, but sometimes the flow is interrupted by complicated explanations that might have heen better in an appendix. I also would have liked answers to unanswered questions. For example, can parots see yellow fluorescence? ()ne of the ams of this book is to show that the eye is not perfect. Why then does Patker specifically exclude image-forming organs from his definition of an eve? Surely the 'proto-eyes' of smails and slugs and the light-sensing organs of other more primitive amimals are part of the story of the eves evolution:
-BII RUDman
Ausirailan Musilum

Fabulous Flatworms: A Guide to Marine Polyclads

 20(1)5, 869.95 mp .

F
 Winter 2(0)4). "Fabulous Flatworms" is an interactive (:I)-R()M covering similar but also new ground. Both works are profusely illustrated and cover evolution. classification. and all aspects of flatworm biology. Although a hardeopy book has obvious aesthetic appeal, the electronic medium emables features not previously avalable. For instance, video dips showing predation, reproduction. gliding and swimming are included, plus many more still images. A further departure from the book is that the (.D)-R(OM is more strongly geared towards identification, making good use of hoth matomy (internal and external) and living colour. Species can also be listed alphabetically, taxonomically or geographically, with each linked to the relevant images and descriptions
"Fabulous Flatworms" is not an exhaustive guide to all species, and some can be difficult to identify from the photographs alone, thus requiring a careful reading of the description. However, with more than for world species depicted, most that are likely to be encountered an be readily recognised. Sur prisingly, or perhaps not, about three-quarters of species included are yet to be formally described. Highly recommended.

ENSURE YOUR COPIES OF NATURE AUSTRALIA REMAIN IN MINT CONDITION. PURCHASE AUTHENTIC NATURE AUSTRALIA LIBRARY BOXES. EACH BOX HOLDS TWELVE ISSUES OF THE MAGAZINE FINISHED IN dURABLE, DARK GREEN PVC. EACH B0X IS \$14.24 INCLUDING SHIPPING. SEE THE ORDER FORM LAST PAGE.

23° S: Archaeology and Environmental History of the Southern Deserts

Edited by Mike Simith and Panl Hesse. National Masenm of Australial Press, Camberra, 20)(5, 4.36 pp. St2.9.5 mp

TXENIY-HVE ISSAYS ISV f() X (H()IARS PR()VIIE AR (:HAE()L()(IICAI ANI) ENVIR()NMI:NIAI perspectives on six deserts strung around the Tropic of Capricom, $23^{\circ} \mathrm{S}$ of the equator. Despite some similar geological ongins, desents are diverse phaces. For example, the sandy Atacama I Desert in South America is 1.50 kilometres wide and lacks obvious life forms. contrasting with a 2, ()) (o)kilonetre stretch of Australian aridity, which has sustamed Aborigimal populations for over 22.006) ears.
23° is is an academic conference volume divided into five sections: Envirommental History, 1) ynamics of Settlement. Rock Art and People. Hunters and Herders, and Historical Perspectives. Whereas the early environmental history is forensically complex and hazy, the recent past comes alive with Bushmen. Inca and Pintubi. Nicely illustrated rock paintings and engravings demonstrate the rich and diverse desert cultures.

Mike Smith is an Australian archaeologist who authored the recent exhbition on deserts at the National Musemm of Australia. while Paul Hesse is a geomorphologist, well known for his research into climate change. It's a good combination, which has kept the chapters briet despite complex arguments. scientitic uncertanties and techmical fargon (hence a useful (ilossary). Highly recommended for anvone interested in the details of envirommental history and desert peoples.

> —Richari) Fuliaciar

UNIDERSITY OF SymNY

Rhythms of the Tarkine: A Natural History Adventure

 リリ-riack (CD) 5.3 .5 mp .

TIIE TARKINE AREA (ONERS APPROXIMATEIY 477 .(O)() HECTARES (OF IHI NORIH-WEST OL Tasmania. The region hosts Australias largest temperate ramforest, the largest area of umprotected wilderness remaining in Tammana, and an astonishing variety of other cultural. biological. geological and landsape values. The authors spent several weeks exploring recording the sounds, and documenting the natural history of the Tarkine.
The es-page booklet is a descriptive diary account of 11 different places the visited in the Tarkine. The authons elaborately describe the different vegetation, birds and animals that mhabit the areas. The birds at each site are well documented and each species is accompanied by a mumber that relates to a track on the ($\because 1$). The (CD) comprises 9) track that were recorded on theire expedition. These are mainly bird calls but also other ammals such as the Tasmanian Devil and some imertebrates. The booklet and (CD) together create a very strong image of the pristine beauty of the Tatine. It almose made me feel like I was sitting on the forest floor.

Useful appendices listing the filuna sightings at each area, and the scientific manes of the flomand finmare are included.
The author sadly points out that, when travelling in Tasmania, breathaking beauty is juxtaposed with massive destruction of the mprotected forests of the Tarkine.

- (itorgrina Brenwn

Ausirimian Musilum

Fruits of the Australian Tropical Rainforest

 6.32 pm .323 .5 mp

Rexepetion. Its a big. detaled, spectalist botamical work and as such somewhat damemg. Yet
 coffee table.

Still. it would be a waste if it spent its life on the coffee table for it contams an inordinate anoment of infomation on rameorest fruits and the phants that bear them. Thankfally everything is extremely well-organised in species accomots, glossary. key and bibliographes so you dont lost. It is a botamests delight-the amoment of information is truly mind-bogegling.
And then there are the illastrations. What can I say: You could easily frame any of them and not be disapponted. But they arent just beatiful: they do what the best natural-history illustration must do-they copture the essence of the subject matter. You really do get an accurate impression of what the fraits look like.

So I am torn between wanting to drag this book with me on my next manforest walk and the innpulse to put it on a pedestal in my lounge room. Should all me dilemmas be this good!

SOGIETY PAGE

 dear．Whether your pectal merest a comervatoon，birds．science，mational parh，bushalking or a particular group of amimals，there＇s a society for you．

ANIMAL WELFARE

North Queensland Widdlife Care Inc．
P（）Box Itto
ATKENVALE（OLI）＋XIt
pll： $11+1+717.37+$
Contact：Lama Allcrott

Membershp：$\$ 10.00$（ （hild S25． 110 Adult S35．（0）Family or（）enamsation

WIRES

NSW Wildite Information
\＆Rescue Service
$\mathrm{P}(\mathrm{C}$ BO 260
FORESTVILIF NSW 2087

\＆ $1 \times 006+1188$
Weh：witurivesorgatu
Contact：Stan Wood

Membershp：S40．00

ASTRONOMY

Western Sydney Amateur Astronomy Group
P（） $130 x+101$
KIN（iSW（）（）I）NSW 2747
Ph：（12 7.39 1528
Weh：umberpgi．com．．tu／users／usadg／ Contact：Tons Ellis

－

BIRDS

Birds SA
11 Shatishury Strect
EIDEN HILLS SA ういうい
Ph：1） 8 x278 786
Web：wixu：hirdssa．ash． 1 I
（ontact：1）r l）avid Robertuon

CONSERVATION

Australian Ecosystems
Foundation

LITHC（OW NSW 2790
Pl：112 6.35211 .33
Web：womedusecosystoms．ors．（1） Contact：Trevor Evans

Membership：Sl（o．（x）Single \＄25．00 Family \＄100 Corporation

Friends of Lane Cove National Park Inc．
（1）－Lane Cove National Park Lady（imme D）rive
（ OHATSWO（）O）NSW 2（1） 7
WCb：hup：／／users．higpond．nct．an／
foldip
Contact：Nocla fones

EDUCATION

CSIRO＇s Double Helix Science Club
P（）Box 225

Ph：02 0276 6（ot． 3
Web：wumecsiro．an／hedix
Contact：Jo－Annc McRac

Memberhip：$\$ 27.00$ or $\$ 2+.01$

Gould League of NSW
P（）130 x $x+6$
MARIRICKVILLE NSW 2204
1）
Web：＂um？could edu．du
Contact：Michael Breman

EARTH SCIENCES

Australian Field
Geology Club
16 Arbutus Street
MOSMAN NSW 2088
1月：（12 9）6921．35
Contact：Douglas Raupach

ENVIRONMENTAL

Royal Geographical Society of SA Inc．
（1）－R．（i．S．S．A
（iP（）Box +19
Al）ELAII）E SA う（o）l
Ph：08 820772
Contact：Nick Harsey

Membership：$\$ 55 .(0)$

INSECTS

Entomological
Society of Victoria
5o looner Road M（）NTM（）RFN（：Y
VIC．30194
I＇和： $1.39+3.5+781$

Society for Insect Studies

12 Park Avenue
R（）SEVIILE NSW 2（）（0）
Ph：0294176171
Contact：Hon．Treasurer

MICROSCOPY

Postal Microscopical Club of Australia（PMCA）

36 Western Avenue
13I．AXLANI）NSW 2774
Ph：（12 47．39 1528
Contact：Tony Ellis

MUSEUMS

TAMS－The Australian
Museum Society
6 College Street
SYIDNEY NSW 2（110
Ph：（1293206225
 Contact：Alison Byrnc

Membership：$\$ 8 \times .0$（o）Family
$\$ 70.00$ Single $\$ 52.0$（oncession

The Waterhouse Club
SA Museum
North Ferrace
Al）EIAII）E SA 5oon
Ph： 108×20.3 98（1）2
Weh：wnewentrhonschlub．orsau／who
Contact：Mary Iou Simpson

Membership：$\$ 00.00$ Family \＄70．00 Single

NATURAL HISTORY

Dinosaur Club
Australian Museum Education
6 College Street
SYIDNEY NSW 2 110
1月：（1）リ．320（）22．3
Contact：Kate（ox
F
Membership：$\$ 15.00$

Field Naturalists Club of Victoria

Locked Bag 3
13LACKBURN VIC．． 31.30
Ph：0．3 9877 980（1）

Contact：Mimi Pohl

Royal Society of SA
SA Museum
North Terrace
AI）ELAII）F SA 50（0）
Ph： 18×22.35360
Web：w＇ulusuluine．adelaide．edu．au／ industry／R．S．S． 4
Contact：John Love

REPTILES \＆AMPHIBIANS

Hawkesbury Herpetological Society Inc．
P（）130x． 30
EMFIRT（）N NSW 2770
Ph：0298．32901．3
Contact：J．A．Bank

QLI）Frog Society

P（）Box 7117
EAST BRLSIBANE
（）LI）+109
Ph： $117.3 .306,1806$

Contact：Jemy Holdway

Newsletter／Journal；\square Monthly
meeting；\square Bi－monthiy meeting；
Annual meeting／Conference；
\square Weekly meeting；\square Quarterly
meeting；\square Field outings／Tours；
\square Conservation／Working programs；
\square Discounted Goods；Mill Magazine；
\square Social／Education activities；
\square Nature Australia magazıne；
\square Seminars

48a

Katydid eggs on a camelia leaf.

Katy Did It

- Could your tell min what laid theses - (arrionsly arramaced esess on my iametialeaf?
- 1.ANE:E I) NI:R

PENNANT HIIS. NSW

A:This eger mass is produced by a katṣdid (a tettigomiid (ricker). probably the spectacular Mottled Katydid (Ephippit)tha trigimtiducosutlala). which occupies a large range over much of Australia in a diversity of habitats. Females have a short, broad, flattemed ovipositor (egg-laying organ) that they use to split the edeges of leaves. They then lay and glae their egess securely into place in the split. Black and yellow mimphes hateh in the spring monthe and then take six to eight months to reach adalthood. Very litele is known about the life history of these katydids. but they are apparently quite easy to ratise in captivity on a diet of leases found in the locial area
-I ANE BRIII(ON
AUSIRAIIAN MUSE UM

One-legged Ducks

- I hu'ce a pair of lacific Black - Duckes (Anas superciliosal) that
 that both were restinge on their lefi less with their rishlt less tacked up) into their bodies and bills macked under their riṣla wingse 'Ilo'e' stapeed likee this for at le'ast lalf an hour: Why' do duck's stand on one lee? Also, is there a 'Itandedness' to ducks or do the') altermate the standing lese?
-AI AN Mosk WA
Kensincilon Park, SA
A: Standing on ome leg is cast for ductis (and other birds) becallse special tendons in the leg lock it into place and it thus requires almost no extra energy to retain this position. several explamations have been proposed for why birds do this. Most fireyouently suggested is that it helpes birds regulate their temperatures by letting them hide ome leg, with its exposed surfaces, in the well-imsulated belly feathers. Birds can seer with one half of their bram while the other side staves
alert, so it may be that standing on one leg allows the other leer to 'sleep' as well. Another thought is that standing on one leg makes it casier for a resting duck (with its head pulled into the side of the body or lad on its back) to monitor its surroundings. This is because it takes less effort to rotate slightly on one leg to look at something than it would to shift position if standing on two.
Handedness is well known in parrots but little studied in other birds. There is no reason to believe that ducks would not have a matural preference for one side over the other. If it is simply like people crossing their leng preferentially: then there may be only limited alternation. If. however, the practice results tiom one or more of the reasom suggested. then changing feet would be expected. ()bservations on sleeping dacks might watant a good school science project.
- Waitir E. Bonles

Ausiralian Musi:um

Thirsty Koala

Q:W'e lin'e in Bolair on the cit) side of the Adelade Hills, and Kiodiss me ammon in oun garkems most of the pear. It is often stated that Kiodus ravely' drink.

 tograplaced a Koald come domen to our sameden pond and spernd ahout to minutes deliberately drinkins in broad dapleshe. How come mon is this bellatiour?
-IAN (illBBONS \& J JUIAY MORRLS
Bhair, SA

Why do ducks stand on one leg?

A:This behaviour is unusual. First -Koalas normally move at night and are seldom on the ground after sun-up. It's the drinking, however, that is particularly worrisome. Although Koalas do drink in the wild. they obtain most of their water from the leaves and dew. Drinking for 40 minutes indicates a serious problem with the kidners. Researchers at the University of Adelade are concerned about the number of Koalas in the Adelade Hills that have damaged kidnevs and have found aluminium deposits in all that they have examined (The leterinarian lune 20(0)) ()xalate crystals in Koala kidnevs (oxalosis). caused be eating plants with high levels of oxalates, can also lead to a violent thirst. There is likely to be a relationship between oxalates and aluminium deposits but that link is currently not completely understood. Whatever the case, raging thirsts are a very bad sign of Koalas and the amimals invariably perish.

Koala drinking from a garden pond.

Answers to Quiz in

 Nature Strips (page 16)1. She-oaks
2. Aboriginal painting styles
3. Eight or ten
4. Forest trees
5. Hoblits
6. 1986
7. Sponges
8. Tiventy-one per cent
9. Keratin
10. A Baolal Tree

Do you recognise this? If you think you know what it is, then send your answer to Pic Teaser, Nature Australia Magazine. Please don't forget to include your name and address. The first correct entry will win the DVD "Wilderness". Spring's Pic Teaser was a nose-leaf of the Eastern Horseshoe Bat (Rhinolophus megaphyllus).

BIRDWATCHING \& WILDLIFE TOURS Kimberley - WESTERN AUSTRALIA

Informative tours with naturalist \& professional ornithologist (ieorge Swann - who knows this region, its tlora and wildlife - one of the Kimber ley's most experienced wildife guides

4WI) Safaris - Camping or fully Accommodated Trips
Tailored Itineraries - Kimberley Cruises Fly/drive tours
ACCOMMODATEI) BI.ACK GRASSWREN TOUR - MITCHELL PLATEAU July \& Aug 06

BEST OF THE KIMBERLES July \& Aug 06 ISI.ANI) \& INLET KIMBERLEY CRUISE Oct 06

PIUS MANY MOREE EXCITIN(; TOURS

For mfore contact:
(ieorge Swann P()Box 220. Broome Western Australia 6725 Tel Fax (118) 91921246 Email inforakumberleybirdwatching.com.au wu.kimberleybirdwatching.com.au

 AUSTRALA FLAT POSTERS

Many of our posters can be purchased flat and unfolded. They cost $\$ 5.95$ per poster (incl. postage \& handling and GST) or you can make up your own set of four posters from the list on your flysheet for the price of $\$ 12.00$ for the set of four. So check out the poster information on your flysheet.

Use the form in the back of this magazine to place your order.

Fertilising the greenhouse

Why' are so many of us laid back ahout the possible impacts of this change?

Horusaís The: Great What off Kalldsoma, portraying three puny fishing boats defying a massive wave that frames Mt Fuli, is a beautiful depiction of humanitys tenacious spirit and use of technology in the face of the awesome power of nature. Presently there is an even greater wase threatening hamanity-the steeply climbing concentrations of greenhouse gases, particularly carbon dionide. The 'Keeling Curve`, named after the American scientist who discovered it. describes the steady and ongoing increase in atmospheric carbon dioxide from 315 parts per million (ppom) in 1958 when measurements began, to the current levels of 379 perm.

The Keeling Curve tracks the steady rise in post World War 2 economic prosperity: driven by the consumption of fossil fuels. It also proves bevond doubt that industrialisation has changed the Earthis biogeochemical cycles. The increase of ot prem of carton dioxide over the last to years may not seem like much, but ice cores from Antarctica show that this in fact represents a ski-rocketing deviation from previous levels for at least the last foo,oofo years and most probably millions of sears, when carbon dioxide flucthated from 280 ppon to 180 ppm. Such an increase is significant because of carbon dioxide's known capacity to trap heat and hence the apt name greenhouse gas ${ }^{\circ}$

Another remarkable feature of the Keeling Corre is the seasonal drop of carbon dioxide by a few parts per million during the northern hemisphere spring and summer, when vegetation grows. and a slight rise when growth stops for
the winter. (The comparatively small land area in the southern hemisphere is no match for the vast expanses of car-bon-absorbing vegetation in the north.) Numerous studies have demonstrated that increased concentrations of carbon dioside act as a plant fertiliser. The current high levels of carbon dioxide will therefore not only change the climate but also alter the functioning of the biosphere due to increased plant growth.

The failure of the USA and Australia to sign the Kyoto Protocol, designed to curt carbon dioxide emissions worldwide, signals a 'business-as-usuall mentality: However the magnitude and complexity of global change mean there is no such thing as "usual" anymore. W'ly are so many of us laid back about the possible impacts of this change: I suggest one reason is that we have become distracted by the scientific squabbling regarding possible effects of increased greenhouse gases. (ilobal and regional forecasts range from benign to catadysmic changes in sea levels, air temperatures and rainfall patterns. Such uncertainty can give the impression that there is nothing much to worry about. However, such thinking is delaying adaptive responses to global envirommental Changes, considered by Sir David King, the British (iovermments chief scientist, to be a greater threat to civilisation than terrorism.

It is impossible. however. to make rock-solid predictions about our nearterm emirommental outlook. This point is demonstrated by ecological scientists" mability to accurately account for what has happened in the recent past. For example. my own groupis research in
northern Australia, and that of me colleagues around the world, is currently detecting the rapid expansion of tative woody vegetation in marginal landscapes over the last $\overline{50}$ years. We are unsure if this expansion is a "natural ecological process due to changed rainfall patterns. the effects of overgrazing, the brakdown of Indigenous fire-management practices or some combination of all of these factors or symptomatic of the "ertiliser effect associated with increased carbon dioxide concentrations.

Such uncertainty has tangible impliat tions for convirommental policy: For example, should the expanding woody vegetation be cleared for ecological restoration, as is often argued by pastoralists: ()r should this phenomenon be celebrated as a passive fom of carton sequestration that is much cheaper than the Australian Govermments currently championed engineering reqponse to rising carbon dioxide, which involves pomping carbon dioxide deep into the ground: Answers to such guestions are political because they demand making choices about socially acceptable economic and emvirommental costs and benefits.

I have no doubt humans will adapt to fiture envirommental change. given that our species survived the global climate change caused by the last ice age managing to colonise all tereservial habitats and even creating enormous artificial ones (cities). Yet the cavalier appliation of science and technology has triguered global envirommental change that protentially threatems our industrial civilisation. It is ironic that the development of an ecologically sustainable global civiliation must also be underpimed by science and technology: Managing the global greenhouse will teach us a lot about this new kind of science that is global in outlook yet humbly acknowledges uncertaint?: complexity and the cratical importance of human values.

Pronfessedr Davil bonwmanis DIRECTOR OF TIII AUSIRAIAN Research Counc:ll Key (entri forr Trenfleal Wilithe Manacimient.

[^3]Save time
and money
hy having
Nature
Australia
delivered
to your
door！
In the
next issue．．．
－Red－tailed
Phascogales
－Liban Frogs
－Mouse Spiders
－Bite Cluh）
－Jealouss
－White Ilis
－Intelligent Design
Autumn issue available March 2006
Toll－free Subscription Hotline： ［1800］ 028558

See reverse for details of back issues

NEW SUBSCRIBER

PLEASE SEND A SUBSCRIPTION FOR

St．art his subscriphon with \qquad
Name

\square
SI（iNEI）（ARI）H（II）ER＇S NAME（PIMI）
Thik if you require a CST tox invome．

GIIT SUBSCRIPTION

 WITH NATURE WITH SOMEONE ELSE」 Stant this subscriptern will \qquad issue

To
Address

Suburb／Town		Posicode			
From					
Address					
Suburb／Town			Postcode		
Prayment by	」 Money（）rder	l －V lsa	［］Mastereard	－American Expres	

My card number is $\square \square \square$ Expiry Jorte ，

SEND this card and payment postage free to：

BACK ISSUES

Australian Museum
Reply Paid 66752
Darlinghurst NSW 2010
Australia

25/1

$26 / 11$

27/6

$28 / 1$

28/4

25/4

26/12

$27 / 7$

28/2

$28 / 5$

26/1

27/1

27/9

28/3

Nature
library boxes

HOLD TWELVE ISSUES OF THE MAGAZINE. FINISHED IN DURABLE,

DARK GREEN PVC,
IT WILL ENSURE YOUR COPIES REMAIN IN MINT CONDITION.

PURCHASE A BACK ISSUE OF NATURE AUSTRALIA FOR ONLY \$5.50

B|B|C

THE BLUE PLANET

Narrated by David Attenborough

Includes 3 new programmes:
The Abyss, Dive To Shark Volcano \& Amazon Abyss

[^0]: Mona Chuguna hunting goanna in the Kimberley

[^1]: Geordie Torr is a freelance science writer and Martyn Robinson is the Australian Museum's Maseums

[^2]: Units in the trusts are offered and issued by Australian Ethical Investment Ltd ('AEI') ABN 47003188 930, AFSL 229949. Interests in the superannuatıon fund are offered by AEI and issued by the trustee of the fund, Australian Ethical Superannuatıon Pty Ltd ABN 43079259733 . Product dısclosure statements are available from our website or by phone and should be considered before deciding whether to acquire. or continue to hold, units in the trusts or interests in the fund. ® Registered trademark of Australian Ethical Investment Ltd.

[^3]: THF L AST WORID IS AN CIPINION PIECT:

