FREE BAT POSTER

SUMMER 2003-2004

How smatit are bilicte
 Blooi-sucking Suiders

 Ereen-hitulied floysBlue Whailes Leaiterileu. Geckios Siluisoln Deserit

CHRISTMAS ISLAND

TREASURES OF ANCIENT PERU

An ancient tale of human sacrifice, ritual, unimaginable treasures and supernatural demons and deities comes to life in the incredible exhibition Gold \& Sacrifice: treasures of ancient Peru.

This exhibition explores the cultures of ancient Peru, from simple, artistic societies 3,000 years ago to the grandeur of the Inca Empire.

ON SHOW AT THE AUSTRALIAN MUSEUM 25 OCTOBER 2003-26 JANUARY 2004
9.30am-5pm every day (except Christmas Day)

6 College Street, Sydney (opposite Hyde Park). (02) 93206000 www-amonline.net.au

MSW apts

The Austrailan Museum is a statutory authority of and principally funded by, the NSW State Covernment

Nature iustralia

SUMMER 20103-20104 Volunte 27 Number 11
Published by the Australi.m Museum Trust 6 College Street.

Sidnev: NSW 2(1)10.
Prone: (12) 9.320 (0)010
Fax: (12) 9.320) $6,17.3$
Web: Mww:natureanstralianet
Trust President: Bran Sherman
Musemul)arector: Michael Archer

Publishing Matragct

JENNIFER SAUNDERS, B.SC
emat; jemuvicalustums.grov.au

Editor

GEORGINA HICKEY, B.SC.
cmall: georgieh (a higpond.com
Photo I:ditom

KATE LOWE

Destim E- Productor

FORTY FOUR DEGREES NORTH
Adectusing
KEN HILL/IBUSINFSS MACAZINFS
Phone: (07) 3394) 1885
cmal: ken-hull(a bigpond com
Subscriptions
Phone: (12) 932066119
Toll-frec (18(1) 1128558
Fax: (12) 9.320 6, (0)7.3
emanl:subscribe (ansatums.gov.au
Amnual subscription (+1 istues)
Withun Australia SA. 36.30 Other countrics \$A 45
Tivo-year subscription (8 isues)
Withu: Australia SA(1) 30) Other countrres SA83
Three-vear subscription (12 issues)
Within Australi.a SA9) 9 () ()ther countries SAI I6

Proudly printed in Auseralia by Penfold Buscombe

 Integizine If it hat fren renumed semil sheque, monev order or Tredt tered suthormetion to ther dderes bove nade pavath io the Australisn Musurn' 파 Australizn , urrency

 acthernatum tren the Pudishine A.marea
 uitural herrage of the Aucrailiaian Repron Opinu ns eapreere by the tuthors are drir own and lo not neivearil

 A ATTRI At STRALLA in printat un archival quslite paper

Published 20103 ISSN-1324-2598

NAI URE AUSTRAIIA
is proud wimner of the 1987. 88. "89). "90, "91, "リ2, "93, "99, 2(x) 20002 . .nd 20103 Whitley Awards for Best
Zoologneal lerrodical. and the 1988 \& " $\%$ () Australi.in Heritage Awards.

front cover
Ground-nesting seabirds such
as this Brown Booby (Sula
leucogaster plotus)
are vulnerable to
Yellow Crazy Ants.
PHOTO BY CHRIS SURMAN

The Simpson Desert and its inhabitants have been under siege since the arrival of Europeans. They have had to endure disense. Rabbits, Cats, Foxes. overgrazing by livestock. changed fire regimes and drought. All this has taken its toll and, since 1788. 26 mediumsized mammals have become extinct or end.angered in ard Australia. Mike Letnic, an ecologist with the Parks and Wildlife Commission of the Northern Ferritory: is trying to end this decline by constructing a time line of major ecological events. By identifying the dominant threats and extinctions and. importantly, the timing of both, he hopes to be able to prevent firther loss of species. His work is already providing some interesting results for it seems that, in the Smpson Desert. it is after floods during the thmes of plenty when species are most at risk. Cats and Foxes thrive and bushfires have the potential to destroy vital spinifex habitat. So it seems that the time we need to protect our desert amimals the most is when the times are good.
()ne of the most popular events each year is when the Humplaick and Southern Right Whales mimate along the costern coast of Australia. But magine if the largest animals ever to have lived on the planet spent some time along the coast of Australia. Well. it now seems that ther do. An
important Blue Whale feeding ground has been discovered along the coast close to the Victorim-South Australian border. At the start of becember the whales start arriving and they have come to feed on timy crustaceans called krill. The krill concentrates in the area because of a coastal upwelling called the Bomney Upwelling. After five full seasons of studying these amazing amimols, there is still plenty scientists hope to learn but Peter Gill and Margie Morrice's account of the story so far makes for great reading.

Also in this issue we take a look at the way birds are forcing us to question our long-held belief that homams hold a mique place in mature We examine the struggle to save Christmas Island from the Yellow Crazy Ant, somethang well worth paying attention to as this deadly ant has recently made it to our shores. We question whether reptiles really did dominate the Australian landscape two million to 10 , (0) (o) years ago. present a new theory that puts (iramy' in the driving seat of human
evolution, and meet a spider that has a very definite preference for blad.

- JENNIFER SAUNDERS

Publishing Manager

A Blue Whale diving for krill.

contents

ARTICLES

Floods, Flames and Foxes

Boom followed by hust is the natural pattern of the Simpson Desert, but it's the odd Fox that tips the balance against many native species
BY MIKE LETNIC
28

The Bonney Blues

Blue Whales are becoming regular visitors to the nutrient-rich waters off Australia's southern coast BY IPETER (IILL \& MAR GIE MORRICE

Bird Brains

When it comes to intelligence, birds aren't so "bird-brained after all. BY (.HRIS BOLANI)

The Myth of Reptilian Domination

Did Australia's reptiles really lord it over mammals during the Pleistocene? A new look at the old data shows the role of reptiles has been greatly exaggerated. while that of the mammals undersold
BY STEPHEN WROE 54

RARE ぶ ENI）AN（汭REI）

Green－thighed Frog

The beautiful lime green wash found on the imner thighs of this frog is like no other．
BY FRANK LEMCKERT
24

WIII）THIN（is

Where Leaf－tails Lurk

The number of leaf－tailed gecko species has exploded in recent years． and there may be more to come yet BY TIM LOW
26
PHOTOART

Reptile Magnetism

Cold－blooded they may be，but
extremely attractive
BY（；RE（；HAROLI）
68

（iL（）BAL Sp（）TIICilif

Blood－sucking Spiders

From the shores of Lake Victoria，in Kenya and Uganda，comes a story of a jumping spider with a peculiar taste for blood．

BY SIM（）N I）．P（）LLARI）
12

BFINC；HUMAN

Hunter，Scavenger，Grandmother，Yam

Forget Man the Hunter as the driving force behind human evolution．
According to a new theory：
Grandmother the（iatherer was
the prime mover and shaker．
BY RICHARI）FULLA（iAR
14

THE SE（：RET IIFE（）F PLANTS

True Blue

Indigo has been used as a dye for
thousands of vears
BY TIM ENTWISLE
76

THE LAST Wi（）RI

Bring Back the Devil？

Tasmanian levils were once common on mainland Australia．Could there be a case for reintroducing them？ BY STEPHEN WROE \＆ CHRISTOPHER JOHNSON

COLUMNS

1 Up front
4 Letters

6 Summer
Some natural goings－on
around Australia this season

8 Nature strins

News of the latest discoveries of our matural world．

78 Reviews

81 Society page

Clubs and societies
around Australi．a．

82 Q \＆A

Your questions answered．

letters

Flying Rats

()tfering a poster of Rambow Lorikeets to Perth residents is like offering a poster of C ame Toads to ()ueenslanders ind Northern Territorians Flocks of Rambow Lorikeets. probably from aviary escapees, were a colourfal rarity in my childhood but have now established themselves across Perth. They shriek acrosis the skies in increasing numbers. exclude the local green Twenty-cight Parrot ${ }^{\text {P }}$ (subspecies of the Australian Ringneck) from nesting hollows. and have earned themselves the nickname fflying rats". Sorry, but this is
one poster that didnit get a place on my kitchen wall.

> -S.AIIY L.AKE

Hicilg.ATE. WA

Marsupial Lions Snatch \& Run

In a thought-provoking article in Australasian Science (September 20(0)3). Antoni Milewski (University of C.ape lown) proposes an alternate version of how the Peistocence Marsupial Lion (Thylatoleo carnifex) might have acyuired its daily meat. Rather than a big-cat style of predator, he conceives of a specialist that raids marsupial pouches or bites chomks trom undead pres: He seems to base this on the
unsuitability of Thylatoleo's incisors as killing instruments and the propensity of some macropods and bandicoots to eject their poouch young when pussued.

Like most theories this
throws up as mamy questions as it perports to amswer. For instance, although kangaroos do jettison joeys when purstaed by Dogs or equivalent dogged pursuers ('hylacimes:). Would they do the same if rushed by an ammal whose bones suggest an ambush spectialist? Woould a species that dumped baby: every time it was startled last very long: And whilst the phesiology of macropods makes such a manoe uve possible we can only surmise about the ability of Diprotodons to do likewise. As to taking bites out of unsuspecting megafatua.

Perth Pests: Rainbow lorikeets.
wouldn't that be a
dangerous thing for a none-too-speedy carnivore to do? I mean. what if they took it personally:
Perhaps we have a problem with mammalian carnivores that don't kill with their teeth. I believe Thylacoleo used it's jaws as a third hand, to secure the prey while allowing the thumb claw on either hand to do the killing. A powerfal neck could have dragged the prey's head back to expose the valnerable throat. Even the forwardpointing incisors would be an advantage, allowing the amimal to breathe easier while mantaming its death grip.
-PEIER W'IIIIAMS BRANXION. NSW

Rankled over Rank

Captain Cook did not sail along the coast of Australia. as stated in the article
*Respecting our Forest Veterans" and the Up Front section (Nitrure Alast. Winter 2(1) (1,3). He was only a
Lientenant at the time Noone refers to Matthew Flinders and (ieorge Vancouver by their rank. Why cant you junt say James Cook: Fortumately James Cook University got it right.
-L.AWRINCE J. COHN IONCASIIR, VIC.

Puddy Cats

The Nature Strips item on when C.ats arroved in Australia (Nature Alust. Winter 20(1,3) contirmed my own opmonon. Many years age in the (ireat Victoria Desert I showed some scratches on the bark of a tree to my Aboriginal assistant. When I asked what made them, his answer was "puddy c.at". I knew then

When did Cats arrive in Australia?
that, if Cats had arrived hundred of years before the British settlers, the first Australians would have given them a name, and not used the British pussy cat.

> -Vinceni Serventy

Wilidife Preservation
SOCIEIY ()F AUSTRAI.IA

Congratulations

We have been enjoying Nature Australia since 1975. Each issue is eagerly awaited and read cover to cover. (Of course, unlike other magazines, we simply can't throw any of the old ones out. The readability and range of interesting topios is excellent. The posters also are admired, and go to good use decorating the walls of a
demountable classroom where one of us teaches. Apart from their decorative and stimulatory function, they cover the mould that the Department of Education never seems to get around to removing!
-Karen \& Steve Tucker Terrigial, Nsw

1 am 1.3 and a young aspiring field biologist and documentary maker. I like to get out into the bush and experience everything hands on, but school Monday to Friday and my father working on the weekends doesint leave much time for this. However, with your magazine it is the next best thing to being there. The
photography is brilliant and the articles well written. Congratulations on a fabulous job.
-SAM lBrewn
Ararat, Vic.

For the Record

The photograph of Killer Whates herding herring on page 15 of the Spring 200.3 issue of Noture Australio was taken by Leif Nottestad.

- C.H.

> Nature Australia requests letters be limiled to 200 words and reserves the right to edil them for sense. Please supply a daytime phone number and type or print your name and address clearly. The best letter in this issue will receive a copy of Snowball Earth The winner this issue is Sam Brown.

From her home in Tasmania Ruth Waterhouse produces an exclusive range of jewellery \& sculpture in precious metals. A new catalogue featuring 18 new designs is available for Christmas.

For a printed Catalogue phone or fax the Studio ons (03) $6229 \quad 2366$ Email: nuth@rutwaterhouse.com
or write to:
PO Box 528 N Kingston Tasmania, Australia 705 I

Pieces shown here are Sterling Silver and agtual size
www.ruthwaterhouse.com

Compiled by Geordie Torr and Martyn Robinson

right, the beetles can strip even a large grom bare.
Sadly, however, the bright, metallic beetles of yesteryear have disappeared from many of their old haunts. In this case, it seems that we ve built over or spraved the grass: areas where their larvae fed, for example in the suburbs of Sydney:

On Lord Howe Island the 'Christmas beetle" is a green stag beetle in the genus Lamprina. Interestingly: South Africans also call one of their insects a Christmas beetle, but it's what we would call a cicada. For more about Christmas beetles. head to
http://wildlife.faunanet.gov. au/factfile.cfm?Fact-ID=164

A fish out of water

When Western Australiås wet winter gives way to a hot, dry summer, the acidic pools inhabited by the tiny Salamanderfish (Lepidegalavias salamandroides) begin to disappear. By January, most are totally dry and seemingly lifeless.

But what happens to all the fish: Well, theyre still there. The Salamanderfish toughs out the drought by burving itself deep in the sand and mud-up to 60 centimetres below the surface where it's still damp-and 'breathing' through its skin. A robust, wedge-shaped skull helps it dig through the sand.

But this isn't the Salamanderfish's only unusual attribute. In fact, so strange is this fish that scientists have had difficulty figuring out how it's related to other fishes and have placed it in a family all of its own-the Lepidogalaxiidae.

Although it doesn't appear to have any more of a neck than other fishes, it can turn its head
up, down and from side to side in a very unfish-like mamer. This is handy as, uniquely, the Salamandertish lacks eve muscles and can't move its eves in their sockets. The fish also sports clongated pelvic fins, which allow it to waddle, salamanderstyle, up shallow creeks to colonise new acidic swamps and lakes.

When the rains return in winter, Salamanderfish rapidly emerge from their subteranean refuges to reproduce. The males are thought to use their anal fin, which is bigger than that of females. to help them transfer sperm. Fertilisation is internal, the males gluing themselves to the females with a stick! mucus.

Salamanderfish.

Salt-encrusted bush, Lake Eyre.

All in all an unusual fish, in or out of water. To learn more, visit
www.tolweb.org/tree?group =Lepidogalaxiidae\&contgro up=0smeroidei

Salty summer

The summer sun's habit of sucking the water from pools and lakes makes life difficult for the creatures that live in them, but it can have a quite beautiful side effect. If the water body. is salty. the evaporating liquid leaves behind accumulations of crystals. These mineral salts. mainly halite (rock salt) and gypsum. take many forms, depending on the prevailing conditions and the chemical composition of the water. They can be simple crusts.
amorphous slabs, or a variety of unusually shaped crystals including block-like cubes (in the case of halite). or rosettes, arrowheads and diamonds (gypsum).

In pure forms, the crystals are colourless or white but when they build up in large masses. they can trap impurities resulting in interesting pink. red. or even black deposits. When the rains return, these "temporary minerals" disappear back into solution, and you then have to wat until next summer to see them again. You can see them year-round.
though, at
www.mii.org/Minerals/ photosalt.html

FROM THE COLLECTION

This is the only specimen of a Lake Eyre Dragon (Ctenophorus maculosus) in the Australian Museums reptle aollection. it was collected at Lake Eyre in South Australia by F.J. Mitchellthe person who described the species in 1948-and was received from the South Australian Museum in 200 t in exchange for some ather specimens.
Lake Eyre Dragons are only found on the margins and salt crusts of salt lakes in the Lake Eyre region. Living in such a harsh environment has led to some nifty adaptations. First up is a set of 'eyelashes'-spiny scales around the eyes that are thought to shade them from the glare of the dazzling white sheets of dried salt. Moisture is incredibly scarce where these little lizards five, and theyre able
to survive on whatever water they can eke out of their foodmostly ants, athough they'll pounce on any insects or spiders unfortunate enough to be blown out onto the salt. They can also change colour, darkening in the morning to warm up quickly and then turning lighter to reflect the midday heat.
In summer, the lizards usually stand with their toes or sometimes their entire feet off the ground so that the heel and wrist joints are the only points of contact. This bizarre stance prevents them from overheating or burning the soles of their feet.
For more information, visit wwwahc.netau/schoolstv/ animals/LAKEEYREDRAGONS. htm or see them in the flesh at the Alice Springs Desert Park (or head out to Lake Eyre itself).

nature strips

COMPILED) BY (iEOR (IINA HICKEY
1)ANIELIF C.I(OI)E.

RICHARI) FUII AGAR. Karina Hoi iden, Michael Lee, Karen Mc:(ihee, John SCanion, Rachei SUllivan, Abibil: TIIomas, (iEORI)IF Torr ANI) VANISSA W(OOIDS ARE RFFOUIAR (ONTRIBUTORS, T() NATURE STRIPS.

Great Wall Flowers

0uestion: What do hloodthirsty, rimpaging Mongol hordes and the flow of plant genes have in common: Answer: Theyve both been impeded by the Great Wall of China.

When populations of a species become separated by a geographical barrier, their genetic compositions gradually diverge. Eventadly they will become so different that they can no longer interbreed. . and new spectes are born.

Such barrers may include rivers, momntams, or patches of unsuitable habitat, but man-made obstacles may also have an effect. A team of Chinese researchers. led by Hongya Gu (Peking

University). decided to put their (ireat Wall to the test.

First they selected three sites-two bisected by six-metre-high sections of the wall and the other (their control) bisected by a narrow path. They then collected samples from a variety of plants from either side of the wall and path, and compared their genetic makeup.

Plants separated bye the Great Wall had indeed diverged significantly more than those separated by the path, and this was most notable in species that relied on insects (rather than the wind) for pollination. These changes are likely to have taken place since erection of the wall over o(t) y years ago.

They also found that the amonnt of genetic variation within species on the same side of the wall was higher for insect-pollinated plants. Clearly insects only do a good job of tramporting pollen locally, not over the wall like the wind.

- (i.T.

Doing the Faecal Fling

Musv caterpillars that ousd and live in leat shelters hase the curious habit of ballistically ejecting their droppings over a metre from their homes.

They do this with the help of a hardened structure that

The Great Wall of China has kept more than marauding tribes at bay.

acts like an anal latch and that only opens when there is sufficient build-up of hood pressure to blast the pellets away.

But why fling frass (as insect poo is called)? Is it a matter of housekeeping to keep the caterpillars sate from disease? Is it to prevent overcrowding so the caterpillars don't have to waste valuable energy building new shelters when the toilet overflows? Neither, according to Martha Weiss from Georgetown University: who conducted experiments with the Silver-spotted Skipper (Eparg)reus clarus). She found no significant differences in survival rates for caterpillars raised in clean/dirty or empty/crowded conditions. But she did find a difference in the rate at which caterpillars were preved upon by the wasp Polistes fuscallus.

To test this ide.1, Weiss presented wasps with leaflets bearing two similar leaf shelters, each with a caterpillar inside. On one of the leaflets she placed 25 droppings, while on the other she placed 25 glass beads the same size and colour as the droppings. She found that wasps were four times more likely to attack caterpillars with frass than those with beads.
Weiss concluded it was the smell of the droppings that the wasps were attracted to. So the best way for caterpillars to throw enemies off the scent is to. . ready. aim.

> -V.W.

Penis Bones

The expression "getting a boner' (meaning to have an erection) applies literally

Pumas (Felis concolor) are one of many mammal species that possess a penis bone. But what function could it serve?
to many different mammals but, ironically, not to homams who comed the phrase. You see, humams lack a penis bonce, or baculam.

Among those mammals that do possess a baculum (present in carmivores, bats, insectivores, rodents, colugos and some primates), size varies conormously and disproportionately to the size of its owner. A $5.5($ o-gram marmoset, for example, has a baculum measuring just two millimetres, while a tiny
6.3-gram bush balbe has one around 1.3 millimetres long. But the real enigma is why they have a penis bone at all. Because of the energetic costs associated with growing and maintaining penis bones, it is assumed that bacula do have an adaptive function in at least some specties. (Over time, a number of hypotheses have been advanced. The first proposes that the baculum provides extra rigidity to the erect penis to facilitate
intercourse, useful in species where mounting occurs before full erection (some members of the dog family). or for strongly sexually dimorphic species like Walruses where it could help large males shoehorn' themselves into much smaller females.

The second hypothesis proposes that the bone helps those anmals that remain *locked together after ejaculation (some dogs) by preventing the urethral canal
from being squeezed shat and impeding sperm flow. The third idea suggests that the additional penile rigidity helps stimulate the reproductive tract of the female, inducing ovulation (as in some cats) and increasing the likelihood of successtul fertilisation.

Determined to get to the root of the issue. Serge Lariviere (I)elta Waterfowl Foundation, Manitoba) and Steven Ferguson (Lakehead University: Ontario) compared baculum size. degree of sexual dimorphism, duration of copulation and occurrence of induced ovulation, across 53 species of North American carnivores. correcting the data for any similarities due to relatedness.
Unfortunately, the results were inconclusive. They found that baculum length was independent of both sexual size dimorphism and

Hunting male Saigas for their horns has had a devastating effect on their population

copulation duration, refuting the first two ideas. Baculum length was also found to vary little between induced and spontancous ovulators. putting the kubosh on the third hypothesis as well.
Make no bones about it. they s.ly, it's back to the drawing board on this one.

$$
-\mathrm{R} . S .
$$

From Rut to Ruin

ess than a decade ago, the -steppes of central Asia were inhabited by great herds of nomadic Saiga antelope (Sitiga tatarica). Yet in the socio-political turmoil following the collapse of the Soviet Union, the Saiga has been
hit by an epidemic of poaching. Saiga horn, harvested from the males, is used in Chinese medicine for the treatment of fever, and can fetch up to $\$$ USion per kilogram. Numbering well over a million just a decade ago, Saigas have now declined by リラ per centthe most sudden and dramatic population crash ever seen in a large mammal population.
Hunting males for their horns has had a catastrophic effect on the entire population, as Eleanor Milner-Ciulland (Imperial College London) and colleagues have shown. Although an adult male usually maintains a harem of 12-30 females, male-biased poaching has resulted in harems with more than Ion females. Frankly; the males

on Saiga reproductive behaviour will help bring these antelopes back from the brink.

$-\mathrm{K} . \mathrm{H}$

Bipolar Fish

Alarge male Patagonian Toothfish (Dissostichus cleginoides), nomally found only in subantarctic waters and off latagonia, has smuck its way more than $1(1,(1)()$ kilometres north to Cireconland.

A fisherman from the Fateroe Islands was perplexed

The Patagonian Toothfish has made a surprising appearance 10,000 kilometres north of home.

when the I.8-metre. 7()kilogram, deepwater giant turned up in his catch of Greenland Halibut, so he froze it and sent it to Peter Rask Moller (University of Copenhagen) and colleagues.
The species, which has replaced dwindling supplies of cod as a propular table fish around the world, was previousty unknown from the northern hemisphere. In

BIRDWATCHING \& WILDLIFE TOURS WESTERN AUSTRALIA

Informative tours with naturalist \& professional ornithologist George Swann - who knows this region. its thora and wildlife - one of the Kimberley's most experienced wildlife guides

4WD Safaris - Camping or fully Accommodated Tailored Itineraries - Kimberley Cruises Bushwalking - Fly/drive tours.

KIMBERLEY COAST WILDLIFE EXPEDITION CRUISE

Cruise along the remote Kimberley Coast from Wyndham - Broome Specialist Ciuides on hoard - Narch 2004 - The Cruise of a I ifetime

KIMBERIEY ISLANI) \& INLET CRUISE

A superb birding cruise visiting I acepede Is. Adele Is, Walcott Inlet and Sale River - Specialist guides ()et 2004

PLES MANY MORE EXCITING TOURS for 2004

For brochure contact: George Swann P()Box 220), Broome Western Australia 6725 Telfax (08) 91921246
Email kimbird(utyg.com.au www. kimberleybirdwatching.com.au

Ideal for groups, overnight travellers and families.

Attractions and Facilities Include

- The only pair of breeding Masked Owls in captivity
- A Wildlife Sanctuary for endangered mammals
- Spot lighting to observe native animals at night
- Over 8 kms of graded onsite interpretive bushwalks
- Licenced restaurant and conference facilities
- Full range of accommodation styles.

Located at Point Lookout, off the Waterfall Way, via Armidale, NSW. Situated amongst World Heritage-Listed New England National Park and Cathedral Rocks National Park.
yaraandoo Phone: 0267759219 Fax: 0267759216
Email: enquiries@yaraandoo.com.au
Quote NI for a free nights accommodation (conditions apply).
www.yaraandoo.com.au

fact, the farthest north a Patagonim Toothisish had ever been caught before in the Atlantic was off the coast of Uruguay:
So how could a fish, which only survives in temperatures of $2-11^{\circ} \mathrm{C}$. traverse the treacherously balmy waters of the tropics? The researchers suggest it is a stray that hitched a ride in cold, deep-sea currents. In the tropics, once you get down to depths of $5(x)-1.0(x)$ metres, the temperature drops to less than $111^{\circ} \mathrm{C}$, providing a comfortably cool corridor for cold-lowing fish.

Moller and his coworkers saly the find could also help? explain the distribution of some species and families of fish that are found at both poles but not in the warm tropical waters in between.

Trunk Calls

Ihe deep. booming. infrasonic calls of elephants are thought to facilitate long-distance commumication between herd members. Female African Savanna Elephants (Lowodonta africama) are familiar with the calls of up to $10(0)$ different individuals. and react distinctively to the calls of family members as compared to others. Their calls can theoretically travel up to ten kilometres in ideal conditions. But sound characteristics change over distance, so how much does an elephant understand from a call made from a long way away?

Karen McComb (University of Sussex) and colleagues investigated how well elephants can identify individuals from calls made at varying distances. In
playback experiments, the researchers found that elephants recognised their own family members contact calls from as far away as 2.5 kilometres, but more commonly identified them at $1.0-1.5$ kilometres away: Farther than that, the elephants listened but showed no signs of recognising the caller

Recordings and sound analysis revealed that different parts of the elephant's call deteriorate at different distances. The parts of the call that retain the most fidelity over long distances are not, it turns out, the intiasonic components below. 30 Hertz (barely audible to homans). but the frequencies we can hear easily-around 115 Hertz.

This particular frequency band is created when the call

African Savanna Elephants speak

 through their noses.is filtered through the cavities of the vocal tract. The narrower the spacing between peaks, the longer the vocal tract that ereated the call. In female elephants. the spacing between these peaks predicts an unusually: long vocal tract of nearly three metres, suggesting that the elephants use both their pharyngeal cawity and their trunk to filter calls and provide individually distinctive calling information. So it seems that for elephants at least you just cant beat a trunk call for long-distance communication. $-1) . C$

Shark Gel

- harks are known, and

Ceared. for their sixth semse-the ability to detect electrical fiedds generated by

He collected the clear gel by squeezing the snouts of a Blacktip Reef Shark and a Great White.

the movements of fish and perhaps the frantic thailing of nervous swimmers. Now
Brandon Brown (University of San Francisco) has discovered another remarkable ability of sharks: gel found in their smouts acts like a semiconductor. enabling sharks to detect minute changes in temperature.
Ciel-filled camals commect pores on the surface of the shout with electrosensors known as "ampullac of Lorenzini:. Brown collected the clear gel by squeczing the snouts of a Blacktip Reef

Shark (Carcharthime: meldnopterres) and a (ireat White (Carcharodon carcharids). When be warmed the samples to measure the resulting change in electrical field, he found that an increase of just $1^{\circ} \mathrm{C}$. delivered a voltage of around 300 microvolts. Taken with results of previous experiments that showed the celectrosensors respond to a mere 10.15 microvoles, this suggests that sharks could detect temperature changes well under one thousandth of a degree.
Brown says when a shark
swims into an area that is suddenly warmer or colder. the gel transtorms the temperature change into an electrical signal, which the sensors prick up and then send as a message to the brain. Such an adaptation could help the predators to identify thermal fronts, nutrient-rich areas where warm and cold waters mis. and where smaller fishes gather to feed in large numbers.
$-R . S$

Pruning the Human Family Tree

Arehacologists are either lompers or splitters.
depending on their tendency to mimimise, or maximise. the number of hominid species recognised. Recently splitters have hogged the headlines, bringing the total

Blacktip Reef Sharks have sensitive snouts.

An adolescent male Orangutan uses leaves as gloves to protect his hands from the thorny branches.

Bultured Apes

pRembin min shown to demonstrate behaviours that are culturally based. Now a new study has revealed that Orangutans (Pongo pygmaens) are cultured too.
The discovery arose out of an observation that animals on one side of a river barrier used sticks as tools to pry out seeds from spiny fruit, while those on the other side of the river did not. So a team of Orangutan researchers, led by Carel van Schaik (Duke University), got together to compare observations taken throughout coastal Borneo and northern Sumatra.
To their amazement, they identified 24 culturally transmitted behaviours, including using leaves as protective gloves, snag riding (an Orangutan sport where the apes ride a pushed-over branch, grabbing vegetation before they hit the ground), building sun or rain shelters for nests, and using sticks as tools to extract insects from tree trunks, seeds from fruit, or to scratch themselves.
The researchers were wary of jumping to conclusions because cultural transmission requires more than just the mother-infant bond, but also extensive social contact, and Orangutans are the least sociable of all the great apes. There were also concerns that the observed differences might be nothing more than straightforward adaptations to varying habitats, without social transmission.
However, they found that habitat had no significant impact on behavioural similarities, and that animals from geographically close sites showed greater similarities than those from more distant locations. They also found that the greatest behavioural repertoires were found in Orangutans with the most social contact, that is, those that had the greatest opportunity to learn from each other.
These findings push back the evolutionary origins of culture in the human line to at least 14 million years ago, when Orangutans first branched off from the rest of the apes.
number of described species to about 20. But recent studies are questioning this trend.
An upper jan and lower face from Olduaai Gorge (Tanzamia), for example. maty help prune one twig in the human family tree. Rohert Blumenschine (Rutgers University) and colleagues showed that this 1.8-million-ve.ar-oldd specimen, dubbed OH 65. had a mix of features found in two previously described species-one already present in the Olduavi deposits (the type specimen of Homo hathilis, made famous by the Leakey family) and one not recognised in this area before (Homo mudolfensis. from Koobli Fora, Kenyal. The tean suggests that the new specimen and the one from Koobi Fora are really: just normal variations of Homo hatbilis, and that the mame 'Home rudolfensis should be dropped.
Tim White (University of Berkeley) also argues that there are too many species but believes this may have come about from a misunderstanding of geological processes. Take Kenjantirepus platyops, the 3.5-million-year-old 'flatfaced man from Kenya, described in 2001 on the basis of a skull made up of over 4,060 pieces of bone. According to W' hite, the specimen gets its distinctive features not from its genes. but from what he calls expanding matrix distortion: During fossilisation, the matrix expands in a nonpredictable fashion. splintering the bone into fragments and distorting the original shape. W'hite suspects that Kenyenththropus is really just another form of

Lucy' (Australopithecus afarchsis).
The case for shaving the bush and trimmining the tree is gaining favour again-but for new reasons.

An Iteal Serpent

\int ow long should a snake I be?"' sounds as unanswerable as the epigram "How long is a piece of string:" However, Scott Boback and Craig Guyer (Auburn University: Alabama) have demonstrated that there might indeed by: an ideal length for a snakea size that maximises overall efficiency of its clongated body plan.

First they looked at the sizes of a large global sample of smake species. The most common body length was around one metre, with
numbers tapering off rapidly either side of this prak.
Next they graphed the size ranges of snakes on islands. Large islands have many snake species encomprossing a wide size range, while smaller islands have fewer species with a narrower size range Extrapolating, they found that when an island is so small that it supports only one snake spectes, the expected size of this lone species is almost exactly one metre. Real one-snake islands' support this mathematical prediction.

Finally, the researchers exammed what happens when mainland smakes invade islands and escape from competition with other snakes, which might have prevented them from evolving to their "ideal" size. When snakes over a metre

North American Corn Snake (Elaphe guttata). Is there an ideal length for a snake?

long underwent such ecological release, they shrank, while smaller snakes grew larger.

The metre is usually known as the standard (but arbitrary) unit of length in the metric system: once a bar of platinum alloy in Paris, but now defined as the distance light travels in a vacuum during
1/299.792.4.58th of a second. Herpetologists
(Top) The Komodo Dragon is the world's largest lizard. (Bottom) Kraken, a captive female Komodo Dragon, plays with a rubber ring.
might argue that the ideal smate would provide a more meamingful basis for defining a "standard metre", but some loss of precision would be inevitable, and it seems unlikely that a serpent will ever become the new aniversal reference.
—M.L. ※゙ J.S

Playtul Dragons

T
(líranus komodoensis) isn't
known for its jocular mature As the world's largest lizard. the Komodo's reputation has been forged by its predatory habits, camila, listic tendencies and the fact it is not above preving upon the occasional human. Yet observations of a young captive liomodo called Kraken have revealed that dragons may have a lighthearted, even playful side to their persomalities.
Kraken's whimsical antics. while on display at the National Zoo in Washington 1) C. prompted (iordon 13urghardt (University of Tennessec) and colleagues to investigate play behaviour in Komodo Dragons. During the two-year study: Kaken was video-taped in a series of 31 tests, where she was given a variety of novel objects to interact with. including a rubber ring, a Frisbee a temmis shoe. a bucket filled with paper towels and a handkerchief These objects were laced with different scents. including perfime, rat blood and corn oil so Kraken could distinguish between prey and non-prey items.

Kraken showed a variety of responses to the different "toys". including play-like
hehaviour such as tug-ofwar with the keeper's handkerchief and spontaneous prawing of the Frishee. Yet when the same objects were laced with the scent of hlood, Kraken exhibited a predatory response, secreting copious amounts of saliva, whipping her tail and protecting the prey item".
The researchers believe these observations show that play hehaviour is not just limited to warm-hlooded amimals with large brains. If there is such a thing as reptilian revelry, it's not surprising the Komodo Dragon is the first to display it. Known for its complex behaviour and intelligence. the dragon is the most likely lizard to reveal a fun-loving alter ego-despite its fierce repute.

Large tracts of untouched jungle

 and woodlands may not be able to sape the Gorilla and Chimpanzee from extinction.
Apes on the Brink

S cientists have heen preaching for decades that habitat protection would secure the future of our species closest relatives. Now revelations that even large tracts of montouched jungle and woodlands may not be able to save the Gorilla and Chimpanzee from extinction have sent shock waves around the world.

Most of the planet's wild Gorilla (Corilla gorilla) and (Chimpanzec (Pam troglodetes) populations survive in relatively large areas of
pristine forests in Gabon and the Republic of Congo in western equatorial Africa. However, surveys of nest sites across (babons forests from 1998 to 200 2 indicate that ape populations have shrunk more than $\overline{\mathrm{J}}$ (per cent in less than two decades, and the researders recommend their status be upgraded from Endangered to Critically Endangered.

Two main factors are responsible for the population crashes. according to the 2.3 United States, Enropean and Gabonese researchers behind
the findings. Hunting of apes for bushmeat has risen considerably following the penetration of mechanised logging into once remote areas. And there has been a dramatic rise in the number of deaths caused by Eloola, a contagious and deadly virus that affects hoth apes and humans.

No-one is quite sure what causes outhreaks of Ebola, but the virus is thought to reside in some as yet unidentified "reservoir" species, such as a fruit bat. And humans are believed to contract the virus from eating intected apes. If only. the locals could be made more aware of this fact.
-K.MCC

Mungo Man Dates
 Mungo Lady

ake Mungo in semi-arid New South Wales-with

Boxus librarius spp.

NATURE AUSTRALIA'S attractive library box holds 12 issues of the magazine. Finished in durable dark green PVC with gold lettering on the spine, it will ensure your copies of Nature Australia remain in mint condition.

Library boxes are available at $\$ 14.24$ each, including postage and handling. Use the form in the back of
 this issue to order your library boxes.
its human artefacts and extraordinary preservation of burials-has been central to the debate on timing of the first Australians. Original estimates of 30,000 years for 'Mungo Man'-the world's first recorded ritual ochere burial-were later upped to $42.00(1-45.000$ years, and then again to 62.000 years in 1999. This last estimate was way out of whack with an estimate of $20.000(1-2(0.0) 00$ years for "Mungo Lady". whose burnt remains were found nearby and represent the world's first recorded cremation. Not comfortable with this spread of dates. geomorphologist Jim Bowler (University of Melbourne), with a team of archaeologists and dating experts, analysed new sediment samples from levels reliably located at the burial sites.

These latest estimates suggest that Mungo Man and Mungo Lady were buried at about the same

Mungo Man's new date re-ignites debate on the time and dispersal of the first humans into Australia.

time (and were perhaps even an item?) 38.000-42.(1)0) years ago. Deep below Mungo Lady's cremation site was an assemblage of stone artefacts found in sands last exposed to sumlight $+6,00(1)-50,000$ years ago. These dates are similar to suggested ages for occupation in south-western and northern Australia. If the deeply buried artefacts have not moved downwards and do relate to occupation. Aboriginal ancestors were living in an enviromment characterised by increasing aridity. Windblown silt, dust. weakly developed soils and lake-floor clay indicate tluctuating lake levels. followed by dramatic drying
of the lakes nearly 40,000 years ago.
Contrary to suggestions that Aboriginal ancestors drove the extinction of Australia's giant animals around this time, the new evidence reinforces the importance of climate as a contributing factor, putting both humans and megatauna under serious stress in their search for food and water (see "Lost Ciants". Niture Aust. Winter 2002).

Occupation bevond 4.3.000 years in Australia is still contested, and Mungo Man's new date re-ignites debate on the time and dispersal of the first humans into Australia.

Not too Flashy

The male Spotted Bowerbird (Chlamydera maculata) is in a bit of a quandary: He builds a decorative bower to attract the interest of females. yet he needs to avoid the attention of his male competitors. If rival males think his bower is too flash. they will put him in his place by demolishing his ostentatious arrangement. So how can you be showy, without showing off: It appears the Spotted Bowerbird struts a fine line between magnificence and modesty.
loah Madden from the University of Shefficed studied this trade-off in a population of Spotted Bowerbirds from Taunton National Park, central Queensland. He mampulated the number of Solanum berries exhibited in the bowers and then filmed the birds reactions.

When Madden added

Excavation of Mungo Man, western New South Wales.

The Aquatic Spider is the only spider that spends its entire life under water.

Mquatic Spitiers

That big, hairy spider in your nightmares is almost certainly a she. The females of most terrestrial, web-building spiders are larger than males-probably because smaller individuals have better mobility and males are more active (see "Incy Wincy Spider", Nature Aust. Autumn 2003).
However, in the Water Spider (Argyroneta aquatica), the only spider that spends its entire life under water, males are an average 30 per cent heavier than females. Dolores Schütz and Michael Taborsky (University of Bern, Switzerland) wondered if this sexual size reversal was somehow related to the spider's aquatic lifestyle.

The spiders, which are largely nocturnal, breathe under water from air bubbles trapped in hairs on the body. They retreat to diving bells, made of silk and filled with air bubbles, to digest their prey, moult, copulate and raise offspring. Males rove around in search of prey, in contrast to females, which spend most of their time in their diving bell, catching prey from there. Given the apparent importance of mobility in determining the size of males in terrestrial
spiders, the scientists decided to test whether large size helped the males move more quickly under water.
They placed spiders into water-filled cylinders with and without a cord down the middle to assist them dive. They then turned on a lamp above the cylinder and timed the spiders as they fled from the light. Males and females scrambled down the cord at similar speeds, but with the cord gone, males were much better at free-diving than females. This, the authors say, is most probably due to the males' larger size, which is better at overcoming water resistance, but it may also be related to their longer first pair of legs, used in propulsion. Either way, both these traits probably evolved to make the male spiders, which are out and about more than females, more efficient movers.

The authors also wondered whether perhaps it wasn't just that the males were big, but that the females were small. Sure enough, they found that female size was constrained by the cost of building their air bells.

-G.T.

A Striped Cleaner Wrasse doing its thing for a Many-spotted Sweetlips (Plectorhinchus chaetodonoides).
berries, neighbouring males were seen sabotaging the bowers. Moreover, once a male discovered he had more berries than he had originally collected, he actively removed the excess berries to avoid destruction from other males. When Madden took berries away from bowers, the male owners quickly replaced them. but only to previous levels. It appears males know when to stop collecting.

Although berries attract females and potentially lead to greater mating success. overindulgence will cost a boastful bird his bower. By modulating their display in accordance with their neighbours, male Spotted Bowerbirds make a little razzle dazzle go a long way.
-K.H.

Take Me To Your Cleaner

0tropical reets, fish queve up to have their
parasites removed by cleaner
wasse. Now it seems these small. cheerful animals have a profound intluence on fish diversity:
A single cleaner fish provides its intimate service more than 2.0 o(0 times a day: with some "clients" enjoying up to $1+4$ such encounters. Its well known that where you find lots of fish, you also find cleaners, but rescarchers had always wondered whether cleaners went to areas because there were lots of fish, or whether fish were attracted to a particular reef becallse of the cleaners.

Alexandra Crutter (University of ()ucensland) and colleagues removed Striped Cleaner Wrasse (Labroides dimidiatms)-the main cleaning species-from some of the reefs around Lizard Island, and observed the changes in the resident and visiting tish population over the next 18 months. Resident fish stay put, while visitors (often large,
commercially important species such as Snapper. Coral Trout and sharks) move about from reef to reef. Because visitor fish can choose their reefs, you could expect that if cleaners determine where fish go. more mobile fish would go to where the cleaners are.

After a year and a half. there were twice as many visitor species and four times as many visitor individuals in reefs with cleaner fish. whereas resident fish numbers remained the same. Visitor fish were clearly moving to where the cleaners were, suggesting cleaners play a crucial role in local tish abundance and diversity:

Why resident tish were unaffected is not clear.
Perhaps over a longer period they would eventually suffer, or, bemg smaller, they may: simply be less affected by parasites (see "The Big 1) ie Young", Niture Aust Spring

QUICK OUIZ

1. What do yout call the larvac or caterpillars of Bogsong Motls?
2. Which comitry' was the fossil hird Archaeopteryx discovered in?
3. What is all atlatl?
4. Name the largest island in the Gullf of Carpentaria.
5. What does NASA stand for?
6. How many body parts does a spider have?
7. What animal is on the old Australian twe-cent coin?
8. Which is the only macropod to regularly' inhaluit burrous?
9. What is amother name for the Pys ${ }^{\prime}$ my Chimpanzee?
10. (iive the common numerical term for sodium momofluoroacetate.
(Ansuers on page 8.3)
2001.3).

Intriguingly, cleaner fish could be introduced to damaged or artificial reets to create instant ecosystems. Redouan 13shary (University of (Cambridge) showed that, when Striped Cleaner Wrasse were added to Egyptian reets, fish diversity increased in just two to four weeks. whereas it took + -2 0 months atter cleaners were removed for a change in diversity to be seen.

$$
-\mathrm{A} . \mathrm{T}
$$

[^0]
ANZANG Nature and Landscape Photographer of the Year 2004

ANZANG Nature is organising an annual international nature and landscape photographic competition and subsequent exhibition at state museums and other high profile venues. To enter the competition photographs or digital images must be of subjects taken within the bioregion of Australia, New Zealand, Antarctica and New Guinea. Cash prizes totalling SEVENTEEN THOUSAND AUSTRALIAN DOLLARS are available for winning entries.

ANZANG Nature wishes to encourage excellence in nature and landscape photography. Profit from the competition and exhibitions will be donated to nature conservation organisations that are actively purchasing and managing natural habitat in the region for the express purpose of providing sanctuary to native flora and fauna.

There are nine sections in the competition:

1. Animal Behaviour
2. Threatened or Endangered Animals or Plants
3. Animal Portrait
4. Black and White
5. Botanical Subject
6. Digital Camera Photography
7. Underwater Subject
8. Junior Photography
9. Wilderness Landscape

Entries close 1st May 2004.

For competition rules, entry forms and further information contact

- Website: www.anzangnature.com
- Email: compete@anzangnature.com
- Telephone/Fax: +61(0) 893213685
- Postal address: ANZANG Nature

GPO Box 2828, Perth, Western Australia 6001

Spitters and swallowers

With little provocation, spitfires will transform from a benigun cangle to a lashing tumour of rearing leads and loristling tails.

THE EXCHAN(EE OF BODIIY F UIISS used to be all art form on Stidney trams when I went to high school. In summer the open doorways blasted 130) and testosterone over the rest of the commuters because at the doors, all the tonghest. acne-necked

Steelblue Sawily

Perga dorsalis

Classification

Family Pergidae (about 140 Aust. species).

Identification

Adult, stout-bodied wasp, 25 mm long. Steel-blue/black with orange/yellow patches on shoulders and middle of back. Females with jigsaw-like tip to long egg-laying organ. Like all sawflies, lacks both sting and 'wasp waist'. Larvae (spitfires) up to 80 mm , black with white bristles, yellow tail tip, 3 pairs legs. Gregarious.

Distribution and Habitat

Woodlands of Vic., coastal NSW and north to south-east Old.

Biology

Eggs laid in bundles along leaf midrib in autumn. Larvae hatch after 4 weeks, pupate in ground late spring, and emerge following or subsequent autumn. Larvae eat eucalypt leaves. Adults do not feed.
youths would be hanging their bodies out, defying each lurch of the train to fling them down onto the gravel. It might have looked heroic, but few did it so willingly between 3.30 and +.30 pm. That was when all the trains that hurtled past each other were congested with mucus-packed schoolboys. To be gob-smacked at the doorway by a judiciously timed slag from a train screaming past in the opposite direction could just about blind you if it didn't cripple you with embarrassment.

Humans don't hold a monopoly on expectoration: there are plenty of spitters elsewhere in the amimal world. Llamas, cobras, archerfish, scorpion tlies...but there are probably spitters at your own back door. Spitters, and swallowers!
We certanly have them at our place. "Spitfires", gum-loving babies of satwtlies (Perga dorsalis and others)-those rarely seen, four-winged, stingless wasps of the woodlands.
Appalling to the senses and revolting of habit, spitfires need little introduction to Australian children who have collectively tortured, cremated. squashed, guffawed and sickened at more writhing knots of the greasy grubs than you could poke a stick at. Who then could possibly believe that these much-maligned insects could be so fascinating?

Spitfires take their popular name from the uncomentional way they respond to such proddings. With little provocation, a fist-sized bunch of these grubs will transform from a benign tangle to a lashing tumour of rearing heads and bristling tails. And, as maturalist Crosbic

Morrison once so eloguently put it, "To add point to this menacing attitude they spit out a filthy green slime which smells strongly of all that is worst in the scent of the encalyptus on which they feed".

The "green slime" is really nothing more than an extract of their gumme diet, a brew of highly concentrated encalyptus oils that is squeezed out of their mouths when they tlex and curl themselves head over heels. On a hot dhey when the oil in their foregut is thin, they can squirt it out as far as 20 cent timetres. In winter, however, they have to make do with just vomiting it up slowly over their heads. If left to themselves, they will slowly suck the oil back to be used on another day:
Needless to saly: with mamers like that, spitfire larvae have few enemies apart from some currawongs. cuckooshrikes and choughs that eat them, and small parasitic wasps, one of which. rather than negotiate a path through the spitters, lays its eggs on leaves likely to be eaten by spattire larvae. Once inside. the parasitic wasp grubs consume the spitfires from the inside out.

Young sawflies hatch in about four weeks from a package of around 20 egges. These are land in a fine hole cout into a leat's midrib) by the jigsaw on the end of the mother's long egg-laying organ. From that hatching moment on until they leave the tree to pupate some six months later, they stay together in a close-kinit bundle. All feeding is done at night after the fearsomely effective daytime ring (like the defensive circles adopted by wagon trains under attack) is broken by "leader larvae" that tap out a signal for the bundle to spread out. Social cohesion is then matintamed by touch and a Morse-code of rear-end tapping.
Separate groups in a tree will combine forces on contact and in mam instances a tree maly be quickly defoliated by their ravening attentions. When this happens the whole writhing assemblage moves down the tronk, at an arerage speed of one metre an houf. to look for a new tree with leaves. If, during the migration, a single grub strays from the pack, it taps out a lost signal with the tip of its abdomen on the trunk or ground. The horde goes berserk and hammers

A writhing knot of spitfire larvae
 (Perga dorsalis).

out a response that eventually directs the lost soul back to the security of the pack. This uncamy tapping is audible to humans.
In late spring the sawfly larvace descend as a group to form cocoons about +0 centimetres below the soil surface. They waterproot the insides of the cocoons with a slury of ellalyptus oil and soil, and emerge in autumn (not necessarily the following autumn) as handsome flying wasps. Newly emerged females (three-quarters of the population) are already full of eggs and don't appear to require the services of a male, nor in their seven-to-nine-day life as an adult do they feed.

The Maranoa-Taroom region of Queensland is well known for a species of sawfly (Lophyrotoma interrupta) that, in certain years. causes enormous problems for graziers and their stock. At these times spitfire larvae are so mumerous that the complete defoliation they cause brings about their own starvation and they fall in large heaps at the base of trees. For some unknown reason Cattle find these piles irresistibly delicious and rush from heap to heap, fighting and horning one another to get at living. dead or pulverised grubs. But the spitfires contain toxic peptides that cause severe mortalities.
Concern about these spitfire toxins is the only thing holding back release of an Australian melaleuca-loving sawfly (Lophyrotoma zomalis) into Florida, USA where the introduced Australian Broadleaf Paperbark (Melalewa quinquenerpia) has overtaken about 250,000 hectares of wetlands. One US I epartment of Agriculture poster, directed at children, promoted the sawfly as a biological agent like this: "Melaleuca, how perculia,/lt's way) too fast jou grou!! / But axe and spades won't salve the 'Glades'; /Tr)' juck')' maids all in a row!"

But let's hope the US takes more care assessing toxic imports than we who flung open our gates to Canc Toads! Applause for clever biological control might be worth a few risks but in the end you might cop more than just egg on your face. Even phlegmy schoolboys will tell you to beware of open doors! I I

FURTHER READING

Morrison, C., 1943. Along the mack. Wild Life .5(5): 192. United Press: Mellourne.

Weimstein, I?, 1991. Uidermining spiffire
defence strategies. Aust. Natt. Hist. 23(11): 848-8.57.
1)r Sieve Van Dycok is Senior Curator of Vertebrates al the (Queensi ani) Museum.

Green--highed Frog

I learm that at least 5(0)-10) millimeeress of rain must fall oner a dap' or two before it is 'really' sood' Green-highed Fros weather.

YAI, YAP: YAB: YAP... ()N II (OOES. all bight long. The call of the male (ireen-thighed Frog. It probably takes a lot out of him to keep this high-powered yapping going for hours on end, but then again, this one might may well be the only chance he ll get to call and breed all year.

My interest ill the Green-thighed Frog (Litoma brempalmata) was sparked by . desire to tick it offt my twitch list. Although known to occur on the coast and adjacent ranges from south-eastem (Queemsland to the Cosford area of New South Wales, this frog is rery rarely seen because it apparently only calls after heaw ranns in summer
So, one weekend after it had poured non-stop for a weck. friends and I headed off to ()urimbah, on the central New South Wales coast, in search of frogs. lacredibly: at
our very first stop, we heard a chorms of frog calls from down in a gully. including the yap. yap, yap of a (ireen-thighed Frog. Talk about luck! But to actually see the frog, I had to wade chest deep through a pool of water full of logs to where it was calling. I managed to catch that holy grail of a frog, but its never been that easy since.

The (ireen-thighed Frog gets its common name from the lime green wash found in the imner thighs, groin and ampit area. This particular shade of green is unknown in any other frog

> To actually see the froge, I had to wade chest deep through a pool of water full of logs to where it was calling.
ppecies. Whether the colour is used in spectes recognition. for predator defence. or for any other purpose is minknown.

After several years of survers in the Ourmbah area, I learnt that at least $\overline{50}-1(0)$ millimetres of ram must fall over a day or two before it is 'really good" Green-thighed Frog weather. Some other species of froge restrict calling and breedng to ranly davs. but for them smaller amounts of ram are sufficient. Thats becaluse they are willing to breed in small puddles and pools. (ireen-thighed Frogs, however. much prefer big water bodies. oftell the size of a small backyard swimming pool, which will last for weeks and ensure the tadpoles have time to grow into froglets.

Green-thighed Frogs lay $30(0)-600)$ egges that forma a raft on the sumface of the beeding pond. After around $2 t$ hours they sink. and the tadpoles stant to wriggle and break out of the egges. This is wery quick for a frog, but their subsequent rates of development are extremely vartable. A clutch I kept had some individuals turnmg into fioglets afier only to dass. While others were still tadpoles without front legs after 120 davs. A variable rate of development is probably a bet-hedging strategy to cope with unpredictable climate.

We know little about what the newly emerged froglets and adults do when

not breeding. I tracked a few frogs with radio-transmitters in the Ourimbah area and found that they all stayed in the thicker forested area around the beedt ing ponds. They pent the dav hading under leaf litter or in low vegetation. avoiding predatory slakes, birds and bigger frogs, and the nights fumpmy around the leaf litter looking for mertebrates to cat. They seemed to spend most of there thase on the ground, but I have seen them a metre or two up atree

fern．In（Queensland they appear to use more open－forest laabitats and some fur－ ther tracking work to see how they use this environment would be interesting．
The（ireen－thighed Frog is listed as Vulnerable in New Soutl Wales and Queenland，and has recently been rec－ ommended for a mational listing a Threatened．The major threat to this frog las been，and still is，land clearing for agriculture and residential develop－ ments．It is most commonly found in
the constal lowlands，which are prime grazing lands and now also much sought－after for housing．Although the cleared patches I have recorded around several breeding sites suggest the Cireen－ thighed Frog can cope with some degree of disturbance，for successful conservation，the breeding sites should be best left undisturbed and comnected to）other breeding sites by forest patches． Such a recipe is the key to conserving many succies $\square \square$

FURTHER READING

Lemckert，l：L．\＆氵 ．Slatyer，C．，2（）（）2．
Short－term movements and habitut use of
the green－thighed frog，Litoria
brevipalmata（Anura：H）lidac）．Aust．
Zool．32（1）：5（ロー）
Frank Lemckeri is a Rlstarca Scientist for State Forbists of NSW WHIRE IIE SIUDIIS FROCOS ANI） HE：IMPACIS OI IORESTRY ACHVITIES ANI）（OTHIER DISTURIBAN（ESS．

Where leaf-tails lurk

The first leaf-tail evolved more than 60) million vears ago, when rainforest dominated Australia.

BACK in the 1971)s, during My high-school years. I became a Queensland Museum volunteer. I well recall the day when the Curator of Reptiles, Jeanette Covacevich, pointed to a jar of pickled leat-tail geckoes and said she would soon revise the group. In those days only two leat-tail species were known, one from the ridges around Sỵdney and another from rainforests farther north. But Jeanette could see from the specimens that others awaited discovery: Her review, published in 1975, brought the number of species to four. But that is only the beginning of this story:
Surveys of rainforest remmants in mideastern (Queensland brought to light other leat-tails lurking in small pockets of habitat. In 1993 Covacevich worked with Patrick Couper (Queensland Musewm) and Craig Moritz (now University of (aliformia, Berkeley) to name another four species. Five more have
been recognised over the years, bringing the total to 1.3, the most recent species only acquiring its name in 2010.3. As well, the original leaf-tail genus ($1 / 2 y^{\prime} / 1$ rus) has been split in three to reflect different evolutionary lineages. Seldom in vertebrate taxonomy have so few become so many so quickly:
Leat-tails are remarkable amimals-on many levels. For a start they are spectacular. most of them sporting prickly spade-shaped tails that affiord superb camoutlage against lichen-dotted logs and rocks. They are also bigger than most geckoes, the Northern Leaf-tail (Saltuarins cormutus) reaching a whopping 25 centimetres, making it Australia's largest. Thirdly, although they are the main group of geckoes in our rainforests, six species are highly restrict-ed-the Mount Elliot Leaf-tail (P? ammicola), for instance, occurring only on one peak near Townsville. Fourthly, and perhaps most importantly; they are a
of each other. 1)NA testing implies that these species diverged a staggering $31-38$ million years ago. Before then there must have been contimuous ramforest around Mackay, carrying one kind of leaf-tail. Spectation would have proceeded after a drying climate elimimated the lowhand rantorest, leaving four small populations isolated on mountains. Through all the climate changes since then, the four populations have remained aport.

The evidence furnished by leaf-tails implies that aridity first struck Australial more than 30 million years ago. And some dry phases, presumably the Pleistocene ice ages. were very dry indeed. Studies of rainforest skinks and smails strongly reinforce these conclusions. But in pranting this picture one has to ask if any more leaf-tails awat discovery: Comrad Hoskin (University of Queens-
land). Who discovered the two newest spectes. has scoured most sigmficant ranforest remmants in ()ueensland, and he would be surprised by any more discoveries in that State. But he has his eyes on the Hoop Pine rainforests of southern New Comea. Patrick Couper, meamwhile, is plaming a closer look at the leaf-tails in morthern New South Wales. The work begun by Jeanette Covacevich back in the 197()s may not be over yet. \square

FURTHER READING
Comper, P! . Comacerich, I. A. \& Maria, C., 199.3. A review of the leaf-tailed geckos endemic to castern Australia: a nem gemus, four news species, and other newn duta. Mem. (ald Mus. 3-11): 9.5-124.

Comper, P! I, Sitmeider, C.I., Hoskin, C.I. \& Comacerich, I. H., 2())(). Anstralian leaf-
twiled geckoes: phologenj, a new. senus, two new species and other new data. Mem. Qld Mus. 4.5(2): 2.5.3-26.5.

Comacevich, 1. 1975. A revicu of the semus Phevllurus (Lacertidac: (icklomidae). Mem. ()ld Mus. f.?(1): 91ーツ\%.

Hoskin, C:I. Couper, PI. E Schneider, C.1., 20)(3. A new species of Phyllurus (Larertidac: (ackeomidue) and a rerised phylogeny' and kec' for the Australiam leaftailed geckoes. Aust. I. Zool. 5l(2):

1.53-164.

Tim Low is a Brisbani-basen) ENVIRONMENTAL CONSUITANT ANI) authorr. His most recint boook. Thi New Natt re, won the Westheid/Waverley Library Awarli) For ExClillince in RISEARCHI.

Although it is common in montane rainforest west of Mackay, the Eungella Leaf-tail remained unnamed until 1993.

There is nothing

BREATHIESS ANI) PAR(CHEI) in the searing midday heat, I trudged through loose red sand towards the only tree for miles-an enormous gnarled Coolibah-nourished by the permanent waters of a spring. Kneeling to take a drink, I swore loudly as something sharp pierced my knee. With the tweezers from m pocketknife. I removed the offending object. a tooth tinged pink with my blood.
It was November 1999 and I was poking around a rare oasis in the Simpson Desert. in Australia's red centre, as part of my Ph.D. project into the decline of native mammals. The tooth that lodged in my leg once belonged to a Rabbit-sized marsupial. the Burrowing Bettong or Boodie (Bertongia lesurur), a species now confined to desert islands off Australia's west coast. The Boodic is one of 26 medium-sized mammal species that have become

THE BOODIE

is one of 26
medium-sized mammal species that have become extinct or endangered in arid Australia since European settlement.
extinct or endangered in arid Australia since European settlement in 1788.
Looking closely at the ground in front of me I could see that the sands surrounding the spring were flecked uniformly with white. These flecks were ting pieces of bone and teeth. Some of the teeth were charred, suggesting they had been burnt or cooked, and were most likely the remains of prehistoric Aboriginal meals. Along with a collection of stone artefacts, rusty cans, broken bottles, a camel carcass and cow dung, these fragments represented just one of the layers of history that have accumblated around the spring.

Identification of the mammal remains reveal that at least 1.3 species have disappeared from this area of the Simpson Desert (see table). Scientists have suggested various factors to account for the decline of mammals in arid Australia. moluding disease, Rabbits, Cats. Foxes, overgrazing by stock, changed fire

The Marsupial Mole was once recorded in south-western Queensland in the Simpson Desert. Today it is only found in the sand hills of the Great Victoria and Great Sandy Deserts.

The Burrowing Bettong is a Rabbit-sized herbivore that once created complex networks of burrows in the Simpson Desert. Nowadays it only occurs on desert islands off the coast of Western Australia and in mainland areas where they have been reintroduced following the eradication of Foxes.
regimes and drought. The aims of my study are to construct a timeline of ecological events. species declines and introductions, wildfires, floods and droughts. With this information and field studies spanning periods of drought and flood, I hope to identify the threats, and particularly their timing, to Australia's arid mammal fauma, so that we can work out how to prevent further extinctions.

UNFORIUNATEIY time macilinis don't exist. There is nothing I would like more than to see the Simpson Desert as it was 150 years ago. The land was then managed by Aboriginal people who burnt the country to renew the growth of useful plants and to hont native animals. About $1(0)-120$ years ago this tradition of managing the land
came to an abrupt end with settlement by European pastoralists. They stopped the small-scale burning and brought with them Cattle and, inadvertently: Rabbits. Cats and Foxes. The desert has never been the same.

Written accounts of carly naturalists provide us with some indications of when the mammal declines occurred. They tell us that some species like the Marsupial Mole (Noforpites tophlops). an insectivore that once bur rowed through sand hills of the Simpson Desert, and the Lesser Stick-nest Rat (Leporillus apicalis), a large herbivore that lived in casthes of twigs glued together by facees and wrine appear to have declined before 1930. less than 50 years after pastoral settement began in the lasels, (Others like the Bilby (. Matertis lugetis). which can still be found in isolated
pockets of western Queensland, carried on a little longer until the $19+1$ s and 1950)s. However, many other species such as Red Kangaroos, bats. Shortbeaked Echidnas, small native rodents and tiny insectivorous marsupials like dumnarts and planigales still occur in the desert.
In other parts of inland Australia much of the blane for mammal declines has been attributed to overgrazing by Rabbits and Sheep. In the semi-arid lands of western New South Wales and central (Queensland, overgrazing by Sheep. Rabbits and kangaroos during droughts has repeatedly seen the landsape stripped back to its bare bones. causing massive soil erosion when vast douds of dust are blown off the land. Here, overgrazing has ir reparably affected the productivity of the land, particu-

Following a good fall of rain this normally desolate gibber plain is carpeted with verdant grass. Once it has browned off, the grass has the potential to fuel extensive fires. Past bushfires are likely to have killed the trees visible in the foreground.

Subfossil remains indicate the Shark Bay Mouse was once widely distributed across Australia, but today its stronghold is Bernier Island in Shark Bay
larly during the dronghts of the late loth and early zoth centuries. Some scientists suggest that the loss of vegetation and soil was so great that most native mammal species had vanished by the end of the 19th century. The Euro pean Fox was introduced into Australia around this same time and is likely to have dealt out the coup de srâce to ans surviving pockets of endangered manmals.
In the sparsely settled Cattle and nonpastoral lands of central and northern Australia, by contrast, threats from overgrazing, Rabbits and Foxes have been more sporadic. There on the frontiers of settlement, grazing is limited by the avalability of scarce waters and has not been nearly so intense. Much of mex Simpson Desert study area has never been utilised for commercial grazing, and many of the areas that have been grazed have only been so since the 1970)s, ruling Cattle out as the cause of native mammal declines.
Looking over the historical record it

Disappearing Acts

Mammals that have disappeared from the Simpson Desert since European settlement. All of the species listed have undergone large declines in their range. The status of species reflects their listing under the Federal Environment Protection and Biodiversity Conservation Act 1999.

Species

Shark Bay Mouse
Short-tailed Hopping Mouse
Lesser Stick-nest Rat
Ghost Bat
Marsupial Mole
Golden Bandicoot
Lesser Bilby
Bilby
Burrowing Bettong
Desert Rat-kangaroo
Spectacled Hare-wallaby
Common Brushtail Possum
Western Quoll

Scientific name

Pseudomys fieldi
Notomys amplus
Leporillus apicalis
Macroderma gigas
Notoryctes typhlops
Isoodon auratus
Macrotis leucura
Macrotis lagotis
Bettongia lesueur
Caloprymnus campestris
Lagorchestes conspicillatus
Trichosurus vulpecula
Dasyurus geoffroii

Status nationally

Vulnerable
Extinct
Extinct

Endangered
Vulnerable
Extinct
Vulnerable
Vulnerable
Extinct
Vulnerable

Vulnerable

seems that Rabbits are also mblikely to have cansed mammal extinctions in my study area. Historical accounts indicate that Rabbits, while common in the southern parts of the Simpson Desert. have always been quite rare in the northern Simpson, as they are today:
According to bounty records. Foses arrived in the northern Simpson Desert around 1915. However, kept in check by Dingoes and the absence of food in what is normally drought-stricken comorery, they are mostly quite rare and appear to pose little threat, at least durming drought. Foxes only become common after heary rains when their chief foods, rodents and locusts, are plentiful.

I WAS ABLE

to observe,

 first-hand, thealmost instantaneous

greening of the desert
and subsequent
population booms.

BHAR THI MOSI IMPORIANI influence on the ecology of Aus tralia's deserts is climate. A 100 (evear record of rainfall for the Simpson Desert reveals sequences of mormally low-rainfall years interrupted with years of extremely high and extremely low rainfall. This is the pattern of the El Nino/Southern ()scillation (ENS()) ENSO is the product of shifting currents in the Pacific ()cean and its two phases-El Niño and La Nina-domimate the climate of eastern and northern Australia.

El Nino brings droughts that devastate agriculture occurring when the waters off northern Australia are relatively cool. During El Niño years, the pace of lite in the Simpson Desert slows almost to a halt. Most bird spectes emigrate and plant life withers. My field

study began in ()ctober 1999) at the height of drought when the dunes were blanketed only by a sombre yellow coat of needle-sharp spinifex and the Cattle. their skin draped loosely over protruding ribs, were starving. During drought. you occasionally see small mammals and kangaroos but never in any significant numbers, and predators (I)ingoes, Foxes and (Cats) all but vamsh
La Niñ. is when the desert hlooms. These are the years of high rainfall when the ocean off northern Australia
is abnormally warm. In April 2(0) , and agam in December 2000, I folt La Ninia's wrath as cevclones dritted unpredictably across the continent, dumpung rain in the desert. On both ocations myself and other researchens were forced to evacuate our study area.
Stranded by rising floodwaters in April 2(x)(we were arlifted by helicopter to Boulia, the nearest town. The following December, once bitten and twice shy, our te.am made a last-minute dash ahead of an oncoming mand depres-

sion across waterlogged flood plains. In each case I was able to observe, firsthand, the almost instantaneous greening of the desert and subsequent population booms. Boom periods begin with the germmation of short-lived ephemeral plants and in exceptional years end with plagues of mative rodents and predators. After the April rains it took just a few days for waterbirds such as whistling ducks and waders to congregate in newly created wetlands, as did thousands of frogs that had sat out the dry
under ground.
Experiencing a rodent plague in the desert is an unforgetable experience. By night the ground is alive with scurrying mice. Stockmen tell stories of thene camps being invaded by voracious Long-haired Rats (Ruthes pillosissimus). These occasional visitors to the desert after floods will eat ahoost anything, even shoes. During plagues large numbers of owls. hawks, kites. Dingoes. Cats and Foxes comerge on the desert to prey on booming populations of rats

The Simpson Desert has a boom-and-bust ecology. Ephemeral and annual herbs are opportunists that are best seen following rains, particularly unseasonal winter falls

At the time of European settlement the Bilby was found throughout much of arid and semi-arid Australia. Its range has since contracted and it now only occurs in the western deserts and in isolated areas of the channel country in Queensland.
and mice. Populations of the Mulgara (Daspercous cristicuuda), a marsupial and ravenous predator of rodents. also increase rapidly at these times.

Eventually the boom becomes bust. Rodent reproduction begins to slow down as a result of diminishing resources and/or social stress. to the point that predators "catch up', eating the rodents faster than they can reproduce. Such intense carnivory known as hyper-predation can force populations of mice, rats, dumnarts and Mulgaras to decline catastrophically: This pattern of boom and bust has gone on for a long time. no doubt. but the occasional presence of introduced predators, particularly Foxes, appears to have tipped the balance against many native species.
Bushtires also occur in the years after flooding rains, coinciding with elevated levels of predation. Millions of hectares of highly flammable spinifex, swollen in size after good growing seasons, can be consumed by a single fire. In 1917. 1951.1975 and 2001 bushafires burnt thousands of square kilometres of the Simpson Desert.
On New Year's Day 2002 I saw columns of black smoke tower over the desert as bushtires raged across the dunes. Most small mammals that burrow under ground escaped the heat of the
bushfires, but six months later few were able to survive their bleak aftermath.
In the wake of hushfires little food remains for mammals, as most of the vegetation and surface seed is destroyed. Perhaps most critical for mative mammals occupying burnt landscapes is the absence of shelter from predators. In unburnt habitats. dumbarts and rodents seek shelter from approaching predators in the safety of dense spinifex hummocks but in the vast expanses of red sand laid bare by bushfires, mammal populations are decimated.
Combining my own field rescarch with historical evidence, it is clear that the threats affecting the mative fama of the Simpson Desert and that of Australia's semi-arid lands are very different. In the Simpson, droughts appear relatively benign, because the native mammals there have evolved adaptations to cope with aridity: Also during drought. introduced predators and herbivores are few. Threats to mative mammals appear greatest in the wake of La Nina's floods. It is during these times of plenty that Cats and Foxes thrive and bushfires have the potential to destroy vast swathes of spmintex habitat. The medium-sized mammals of the Simpson Desert are likely to have become extinct not during a drought but on the toul end of a

flood because of hyper-predation and destruction of habitat by bushfires
To improve the effectiveness of wildife conservation and reintroduction programs in arid Australia we will need to increase our focus on managing widdlife during post-flood periods. With our ever-improving knowledge of ENS() and long-term climate forecasting. carly warning of floods, rat plagues and bushtires is possible. This knowledge could be used to begin predator control before Fox numbers have the opportumity to build up. The extent of

The Spectacled Hare-wallaby, a Rabbit-sized herbivore, has fared well compared to many other medium-sized native mammals from arid Australia. While no longer in the Simpson Desert, they still occur in tropical arid grass lands and woodlands in Queensland, the Northern Territory and Western Australia.
inevitable flood-related bushfires can also be reduced by patch burning during low fire-risk seasons. It might seem strange to worry about the future of Australias desert mammals when the times are good, but some time or other the bubble has to burst and boom will come to bust. My work in the desert will hopetilly prevent it from busting completely.

FURTHER READING

IFinlup:som, H.H., 1961. On cientral
Tustrialient mintumels. Pant II.' The
distribution and statns of ientral Ausitraliturn species. Rec. S. Aust. Mus. 1-4: 1+1-191

Istmic, M., 2(x)2. Longs distantic merements. and the nise of fire imosilis: by small mammulls in the Simpsen Desert, centrial Austrultin.
Aust. Mamm. 23: 125-1.34

Lumne'): D., 2()()1. Canses of the extinction of mative mumumals of the "resterm division of Nom. South Wales: all cooleguial interpretation of the nimeteenth (century) historical record. Rangeland). 23: +4 7 ()

Morton, S.R., 1990 . The impect of Emropeith settlement on the eertehnate amimuls of arid Alustridit: a concepturel model. Proc. Ecol. Soc. Aust. 16: $201-213$

Mike Leinic is an fromonist

 With the Parkis ani) Willmile COMMISSION OF HIE NORIHERN Terrritory. He is unimertakinc: IIS PH.I).. ON THEDECIINE OF NAIIVE MAMMAIS FROM IHE SIMPSON DESFRT, THROUGH the University of Syiney.

IN (ONTIMPLATINC; IHIS. IHI greatest whale of the ocean. one can but admire its...emormous yet symmetrical proportions, and the muscular development which enables at to excel in velocity all its congeners". The subject was the Blue Whale (Balacmoptera musculus), the largest amal ever to have lived, and the writer was the 19th-century American whaler Chates Scammon. Although he made his mane and fortme killing (iny:

Sperm and Northern Right Whales, he was also a pioneer maturalist. Blue Whales could only be admired by such men: they were too large, fist and powerful to be caught using rowed open boats and hand harpooms.

Towards the end of the 19th century: harpoon camon and steam-fired catcher vessels finally caught up with speedy giants such as Blue and Fin Whales (Banlaenopteria physalus), and during the zoth century, the became the mamstay of

Skipper Tim Edkins hauls in a krill-sampling net during yacht-based research early in the study. The Blue Whales feed on the coastal krill species Nyctiphanes australis.
commercial whaling. Usmg factor! ships. this rapacious industry was able to penctate remote Antarctac feedang grounds. More than 300,0 orn Blates were killed in the fouthern ()cean alone. and turned mite such mundane products as edible oils and soaps. now all provided by vegetable oils. Halfbearted management proved futale and even after protection fimally came m 1965. Blue Whales were still killed illegally: Most of them were Py gmy Blace a southern hemisphere subpectes. ()t more than ? (0), 00) 'trace blace Whale that once roamed Antaretic waters. onl 1.0)(o) or so survive, while l'y gime libues which are smaller and have a more temperate distribution. are thought to be

more numerous. Low numbers of Blue Whales also occur in the Indian. Athantic, and North and South Pacific Ocealls. The largest known popula-tion-about 2.001 - is now off Califormina and Mexico,
In Australia, I3lue Whales have always been regarded as a rariey. Open-hoat whalers out of Eden. New South Wales. saw but rarely killed them. Some Pyguy Blues were killed by Humphack whaters between 1954 and 196,3 , but until recently, there was no indication that any Blue Whales were regular visitors to Australion waters. Among whale enthusiats, their sareroty and size have given them almost mythical status.
In 1997, while hrowsing through scientific reports from the 1996 meeting of the lntermatiomal Whaling Commission (IWC), one of us (Peter) found a report of an IWC. cruse in late 1995 that had

AMONG WHALE chthusiasts, their sarcity and

size have siben them almost mithical

 status.searched for Blue Whales along the southern const of Australia. Some were found off Roothest Island. Western Australia. Surprisingly. there were also many sightings near the Victori-an-South Australian border, with Feedang seen on several occasions. These were mootly identified as Pygmy Blue Whales. with a possithle "true" Blue also

Three adult Blue Whales engage in rarely seen 'racing' behaviour, surging along at high speed while vigorously interacting with each other. This may be a prelude to mating, which is thought to take place in tropical waters.
tighted. Distingumhing between the two subspecties at sea is very difficult. and acoustic and genetic differences are not properly resolved vet. So for the present, it is probably safest to simply reter to theme as "Blaes". Asked whether there were any umsual ocemographic features there that might explain their presence. (SolR () oceanographer (ieorge Cresswell replied: "Yes, the Bomney Upwelling
Every November, high-pressure weather systems that lie over the Australian continent during winter, drift south into the (ireat Australian Bight. bringing strong south-easterly winds to waters off western Victoria and south-
eastern South Australia, and driving a north-westerly-flowing current alongshore. This pattern lasts until late March to carly May: The Coriolis Effect (the rotational effect of the Earth's spin) causes the warm, nutrientpoor surface water of this current to drift to the left (south), away from shore. It is replaced by cold, low-salinity bottom water, rich with organic and mineral sediment. When this rich mis reaches sumlit surface layers, tiny phytoplankton photosynthesise and reproduce, causing an explosion of life, a
'plankton bloom'. This soup is the basis of the food web in the Bonney Upwelling ecosystem. Coastal upwellings are rare in Australian waters. and the Bonney Upwelling, which is part of a greater upwelling system from north-western Tasmania to the Eyre Peninsula, is possibly the most productive.
In February 1998, we decided to search for the whales ourselves. We sailed from Adelade to Discovery Bay near the Victorian-South Australian border, and sure enough, there they

(Top) Blue Whale sightings in the study area since early 1998, all of which lie on the continental shelf (water less than 200 metres deep), where upwelling brings nutrients to the surface.
(Bottom) Infra-red sea surface temperature (SST) image showing the Bonney Upwelling surface plume, which originates at Cape Nelson, near Portland. Temperature scale (degrees celsius) is at the top. Upwelling also occurs to the east of Portland, explaining the presence of whales there, but rarely reaches the surface. Some upwelling is also seen off Kangaroo Island. The white and blue patches to the south are cloud.
were-blue Whales feeding at the surface over a period of several days. This was an undreamt-of scenario: a Blue Whale feeding ground, close to the Australian coast. It was time to start a proper ecological study in this area, to establish the extent of the whales" feeding area and its relationship to the upwelling. how the whales use this habitat to obtain their food, and the possible threats to Blue Whale recovery in this region.

TThe firsi quistion we nembell io answer was. what were the whales eating? The coastal krill Nectiphanes anstralis is the key species in this ecosistem. Krill (crustaceans similar to prawns) often occur in areas where nutrients are concentrated. such as coastal up-wellings. While classified as 'zooplankton', they are highly mobile. rather than passively drifting, and form great socially cohesive swarms of many millions. This swaming habit makes them an attractive protein source for a variety of predators. Nettiphanes australis has an added attraction- it often swarms right at the surface, making it easier to catch.

Blue Whales, like other rorpuals (family Balaenopteridae), are filterfeeders. They have fringed flexible plates (baleen) hanging from their upper jaw, forming a fibrous filter. They also have expandable pleats along the underside of their head and throat. Blue Whales specialise in krill. When they feed, they engulf a great mouthtul of water and food, which is held by the expanding throat pleats. This may be as much as 50 cubic metres (50 tomnes!') of water and prev, until the whale resembles a gigantic tadpole. The throat pleats then contract. water is expelled through the baleen, and the krill is swallowed.

The next step in the research was to find out when and where the Blue Whales occur, and to relate their occurrence, and that of krill, to the dymame weather and oceanographic processes that drive this upwelling system. This might seem a huge task, hut aerial survers cover large areas quickly, and wo helpful facts emerged early in the stude: the surface-swarming habit of the krill makes it possible to spot them from the

A Blue Whale lunge-feeding on a krill surface swarm. The whale is moving rapidly from left to right, rolled onto its right-hand side, with its left flipper raised, while water cascades from the corner of its wide open mouth as it fills its expandable throat with water and krill.
air: and Blue Whales are easier to see from the air than any other species of whale. Seen from above, you realise why these large grey amimals are called blue': when they submerge, they light up in a luminous blue, unlike any other species of whale. No-one has yet explaned this phenomenon, which is probably related to the phesical properties of Blue Whale skin pigmentation.
In this digital age. studying links between the atmosphere and the ocean has become an amchair occupation: Captain Sammon would be rightly amazed. In our office, we download daily weather maps, and regional satellite images of sea surface temperature (SST) and 'ocean colour'. Weather maps show the prearaling weather patterns. SST images show when and where cold water is welling to the surface, and ocean-colour images show where the densest concentrations of surface phytoplankton occur. Together. these images tell much about the timing, extent and dynamics of surface upwelling, and how biological processes relate to the phasical environment. We also use moored temperature loggers, small devices that record oceanic temperature at various depths, to examine the dyamics of upwelling. Yachts, fishing vessels and inflatable workboats are used to back up our aerial observations, to study krill ecology: to identify whales and document behaviour, and to attach devices such as satellite transmitters, which hopefully will lead to discovery of the whales' migration routes and breeding grounds.

After five full field seasons, we are putting together a picture of seasonal events. Upwelling starts around midNosember, and Blae Whales arrive around the start of December. Our study area extends from Cape Otway in the south-east. to R obe in the northwest, and across the continental shelf. We know that Blae Whales feed both east and west of this area, but we cant cover all of south-castern Australia: however, it is likely that the most

Blue Whale

Balaenoptera musculus

Classification

Order Cetacea, suborder Mysticeti (baleen whales), family Balaenopteridae (rorquals), 2 subspecies: Pygmy Blue (B. m. brevicauda) and 'true' (Antarctic) Blue (B. m. intermedia).

Identification

Up to 30 m (Pygmy Blue to 24.5 m); tall strong blow; slender body with very long back and very small dorsal fin set well back; silver-grey with dappled pigment spots, but appears luminous blue under water.

Habitat and Distribution

Found throughout the world's oceans; migrates between productive summer feeding areas (polar waters, upwelling regions) and largely unknown tropical breeding grounds; Pygmy Blue rarely found south of 55° S, 'true' Blue south to Antarctic ice edge.

Biology

Feeds almost exclusively on krill; usually solitary or in small groups; calves every 2-3 years (calf 6-7 m at birth, weaned at 7 months); lives $50+$ years.

A rare Blue Whale stranding in Western

Australia. This photo shows how the lower jaw hinges outward to become a huge scoop. It also shows the flexible throat pleats, which have ballooned up from the pressure of the water and sand. The jet-black baleen is just visible, hanging from the upper jaw, with part of the tongue protruding from under it.
intense upwelling occurs throughout our study area, due to the narrowness of the shelf here. The upwelling pattern varies between years. but the result is the same: Blue Whales consistently come to these waters. and they come to feed.

H()X I)() BI UE WHAIES HNI) HHIIR ood? It's something we are still trying to work out. The whales must know from experience that krill are abundant in the upwelling region. but the distribution of krill is patches: responding as it does to dymamic changes in oceanographys. So the whales most likely have searching patterns that lead them to areas of local abondance. and may then use their eyesight, hearing and perhaps even sense of smell to home in on individual swams. These cin occur antwhere between the surface and the bottom, and form irregular three-dimensional shapes that range in size from a metre to over a kilometre across.

A Blue Whale feeding at the surface is the most powerful ammal act imaginable: it rushes in a surge of white water. rolling onto one side and opening its enormous mouth to engulf as much of the swarm as possible; the huge throat pouch fills in seconds. Sometimes the whale will twist and turn in its approach, counterng the krills" desperate and evasive manoenvres. Sometmes it raises its flukes and dives vertically towards deeply submerged krill; what happens down there is anybody's guess.

We now have over 500 sightings of Blue Whales in this area, which is quite phenomenal considering that there were only 35 sightings in Victoria between 1869 and 1999 , and fewer in South Australia. We have sighted 3.4 Blues in a single aernal survey. suggesting that at least twice that number may use the area. We have linked them to their prey, Nectiphanes allstralis; their prey to
the upwelling enviromment: and the environment to the changing patterns of the winds. But these links have only been sketched int there is still an enormous amount to learn.

How many Blue Whales use the area? How long do individual whales remain? How much do they move around in search of prey? Do they feed at might? How do the krill respond to predation? Do the same whates come here every year? Are there certam areas of greater importance to them? I o seasons vary? When the whales leave the area in late April or May, where do they go? There are many other vital, unanswered guestions, which we hope to address in this and future seasons. Our colleagues in Western Australia are working along similar lines off Rottnest Island.

Bhue Whale-both subspecies-are listed as Endangered under Australian law, so their seasonal presence in our coastal waters is cause for celebration. Yet there is no evidence that any populations are increasing. In five seasom of study: we have only seen mothers with calves 15 times-not a sign of a strongly recovering population. Blue Whales may be valnerable to a changing climate, and to a range of human activities. (of current concern are coastal
shipping, and seismic survess in the rich gas fields that underlie the upwelling. which have the potential to displace whales from favoured feeding areas. We are working with industry; govermment and enviromment groups towards precautionary management under which homan activities can proceed, while ensuring that these giants of the sea are given every chance to survive and prosper into an uncertain future. It is our duty to look after them. Captann Scammon would surely agree. \square

FURTHER REAIING;

Calumbokidis, I. \& E Steiger, (i.. 1997. Blue whales. Voyegrewr Press: Stilluater, Minnesota.

Gill, P.C., 2()()2. A blue whule (Balaenoptera musculus) feedings ground in a sourhern Australian colstal upwelling zone. I. Cetacean Res. Manag. 4(2): 179-184.

Preifr (illi ani) Marcile Morrrice are members or the Whale Ecoloogy Grour (Southirn () (fian) al Deakin Univi:Rsity, Warrnambeoll. VIC:Iokla, ANI) W(IRK FULI-IIMI ON THE ECOIOCiY OF THE BONNEY Ubwelling; Biue Whalis.

The powerful blow of Blue Whales once alerted whalers to the whales' presence; now it helps researchers to locate the whales for study.

Among the bird world, New Caledonian Crows may be the 'sharpest tools in the shed'. They use a range of self-made tools to prize out unsuspecting insects.

Research has
CALLED INTO
QUESTION THE UNIQUENESS OF MANY TRAITS CONSIDERED

TO BE 'EXCLUSIVELY HUMAN

BIRD BRAINS

BY CHRIS Boland

WHIN IT (OMES TO) mateligence, we humans can be a marcissistic lot. For centuries many scholars have mantamed that humans are the only intelligent organisms on Earth. Many traits have been considered to be exclusively human examples of acumen-langrage, tool use, wareness of self and of others. deception... The list goes on. However, exciting new research on a number of amimals, particularly birds, has called into question the miqueness of these traits, forcing us to reconsider our place in mature

I- ONE OF HIS OIT-(QUOTEI) ESSAYS. the 19th-century historian Thomas Carlyle dectared, "Man is a tool using amimal. Without tools he is nothing; with tools he is all." Therefore it came as a bit of a shock when in $190+$ Jane Coodall first discovered Chimpanzees (Pan rroglodytes) making and using tools in the Tanzanian widerness. The Chimps were inserting grass stems into termite mounds so they could eat the termites that clung bravely to the probe.

But ornithologists were not overly surprised. Almost 20 years earlier. David Lack-the most influential ornthologist of the time-had shown

Many people are well aware that Chimpanzees and other mammals use tools. But tool use is also widespread among birds. For example, Varied Sitellas (below) and Grey Shrike. thrushes (right) make twigs to pry out grubs from under the bark of trees.
that tool use was commonplace in populations of Woodpecker Finches (Ceospiza pallida) residing on the (iala pagos Islands. These tiny birds would routinely use twigs to spear or pry out grubs under bark.
Since then, the catalogue of tool. using ammals has grown, and is replete with examples from our own region. Varied Sitellas (Daphochositta chrysoptera), Crested Shrike-tits (Falcunculus frontarus) and Cirey Shrike-thrushes (Colluricinda harmonica) all occasionally make similar tools to the Woodpecker Finch. Whitewinged Choughs (Corcorax melanorham. phos) rarely come across mussels in their range, but when they do some use rocks as hammers to crack open the recalcitrant shells. Other birds show a more sophisticated level of insight. For example, Black Kites (Miluus migrans) have been observed dropping bait into lakes to bring fish to the surface of the water, thereby making them easier to catch. A kite may also pick up a smouldering stick from an area recently burned by d bushfire and drop the stick on a patch of unburned grass. The bird then feasts on the small anmals that tlee from the subsequent fire.
Most tool-using behaviours are a means of extracting food. which may provide a clue as to how the mental abilities needed for tool use evolved. The predominant explanation is based on the proverb that "necessity" is the mother of invention". Essentialli: bratin tissue is energetically expensive so animals should have only evolved the netessary intellectual capabilities required to overcome the challenges they fate in their enviromment. Consider a hypothetical duck grazing on a seeningly enders supply of grass. Being particularly brany will not help the duck eat more grass-the duck that survives might be the most mobile, of perhaps the most aggressive, but not necessarily the most cerebral. In contrast, other species such as birds of prey live in a more challenging enviromment. where food may be distributed erratically and

change over time. It may be hidden from view or highly mobile. The foosd itself may be quite intelligent. So, if there are not enough resources to feed all individuals, then
only the smartest in each generation-the ones that are able to outwit their preywill survive. In many hirds survival of the fittest' might equal survival of the smartest
Tool-using behaviour can also cmerge as a result of sexual selection. Male Palm Cockatoos (Probosciger aterrimus), for example, advertise their territory and court females by stamping their foot at their display tree. The cockatoos have enhanced this drumming display by using a drumstick made by cutting a fresh branch from a tree, and then trimming it to size and stripping it of any foliage and bark. The
male repeatedly beats the drumstich against the tree, transmitting his sound for over 100 metres through the forest. Ringo Starr made a career out of this sort of behaviour.

New Caledonian Crows (Corvus moneduloides) boast many different tools in their tool kit. Thes use a hooked tool, made by removing all but one of the side branches from a twig. They fashion serrated rakes (using their beaks as scissors) from stiff, leathery pandanus leaves. They also make probes by modifying their own moulted feathers. Each tool is used in slightly different ways to pull grubs from deep within tree trunks. The crows carry their favourite tool from one foraging site to the next. They also store their tools for later re-use (not exactly in a

White-winged Choughs can be very cunning Young birds often pretend to help feed the chicks at another bird's nest in order to convince onlookers that they are valuable
tool shed, but on a secure place on their perch).
Problem-solving abilities have tradi, tionally been thought to be beyond the reach of non-human animals. Never, theless, birds are coming up with innovative solutions all the time. Recently New Caledonian Crows were shown to mould previously unseen wire into a hook to retrieve food (see "Go Gadget Crow!", Nature Aust. Winter 2003) Another remarkable example comes from Japanese Carrion Crows (Corvis corone), which were found to use passing cars to crack otherwise indestructible walnuts. When the traffic lights changed to red the birds hopped down to the

road and placed their walnuts in front of the waiting cars. When the traffic lights turned green, the birds flew to safety and watched as the motorists drove over the nuts. cracking them open. Then, when the light changed to red again, the birds came down to the road and ate freshly crushed walnuts at their leisure.

Literally hundreds of such reports have accumulated in the back pages of scientific journals. Recently a tean of biologists from McGill University in Canada collated them and compared the frequency of feeding imnovations with the size of the birds forebrain (the brain area responsible for higher-order information-processing) relative to the hindthain. The team uncovered a clear relationship: birds with relatively large forebrains are able to invent fresh solutions to ecological challenges, and to exploit the discoveries and inventions of
others, more often than birds with relatively small forebrams.

A bird's forebrain is usually about five times larger than the average bird's hindbrain. The two groups of birds that are particularly well endowed with forebrain are the "corvids' (crows, magpies, choughs etc.) and the parrots. These birds have forebrains more than 1.5 times larger than the average hindbrain. Birds of prey also have very large executive brams'. It's unfortunate that the birds many people are most familiar with—the humble chook (Domestic Fowl)-has one of the smallest forebrains imaginable, but this bird is the exception, not the rule

ANOTHER IMPRESSIVE ATTRIBUTE of human intelligence is our memory. However, the anmal with perhaps the finest memory on Earth is a bird.

Many animals store food for later consumption, but Clark's Nutcracker (Nucifraga columbiana), a North American bird that belongs to the crow family, is probably the best of all. This amazing bird collects up to 33,000 pine seeds in November that it prudently buries in more than $2,50()$ cache sites across an area of over $30(0)$ square kilometres. Over the next eight months, it succeeds in retrieving over $9(1)$ per cent of the seeds, even though they may be covered by a metre of snow!

How do birds manage such tremendous memory demands? It seems that birds, like humans, store their spatial memories in the region of the bain

Black Kites have been observed carrying smouldering sticks to an unburned patch of grass. The 'fire birds' then gorge themselves on the animals escaping the ensuing blaze.

called the hippocampus. It has been known for decades that people with hippocampal injury suffer severe memory loss and learning deficiencies. In addition, recent work has demonstrated that nerve cells are generated in a mammals hippocimpus in response to memory demands. So after many vears of service a London taxi dravers hippocampus is slightly larger than normal. This in itself is pretty amazing, but its nothing compared to the far more malleable bird bram.

In birds, the formation of spatial memories triggers massive increases in the mumber of new nerve cells that migrate to the hippocampus. As a result, a birds hippocampus mat swell by as much as 30 per cent in only a feew weeks in response to its memory regurements (such as relocating cached nuts). Since brain matter is so energetically costly to maintain, the hippocimnpus shrinks dgatu when the memory demands have passed. How I wish I were a biad-with my hippocampus swelling on demand just before unt
exams.
lute ligence in birds may also arise as a result of selection to overcome the complex and dymanic challenges of social living. Since sociality involves competition between group members. to be successfind a social amimal may need to be able to reflect on its own mententions, as well as those of others. Thus, a consequence of living gregariously may be the evolution of a distinctively Machiavellian or 'political' brath. And what better way to exercise a political bram than to be deceitfill!
Perlaps the best example of deception among birds comes from the wonderfully charismatic White-winged Choughs (see "When Good Help is Hard to Find". Niture Aust. Autumn 1097). (Choughs are cooperative breed-ers-that is. they live in groups composed of a breeding pair and up to 15 non-breeding 'helpers. However. because foung choughs are such feckless fomgers, they are often too hungry (o) help. And because it is socially unacceptable to live in a cooperative group

and provide little help, young choughs often act deceptively: For example. when an adult group member is watching a young chough will place some food in the mouth of the begging chick-but it does not let the food go. Instead. it waits until the adult departs and then takes the "candy" from the babys mouth and eats it! All the while, the chough? pusses for a devoted helper anone its feathered coadjutors.
A chough sitting on the mest ant also help the group motive by preening the nestlings (a very visible but energetically cheap form of helping behaviour). Interestingly: a youth chough is far more likely to preen the chicks after it has just deccived the test of the group, therehy creating a double deceprion. It is also more likety to preen the chicks if another bind and see it (do so). What ha chough that has been sitting stone still on the net while the rest of is group is foragity Out of sight. As soon as some of to group members return into vell. it

starts to preen the chicks, as if to shout "Look at me, I'm helping!'
Why is a young chough more motivated to help when others are watching? It is probably concerned about its social status. Choughs need other choughs to like them; they can't breed without them. On average, seven choughs are required to support one chick through its first winter. If a chough wants to disperse and start its own group, it needs at least six other birds to join it. So to be attractive, choughs must be good helpers, or at least pretend to be good helpers
Rob Heinsol ${ }_{1 n}$ and his colleagues at the Australian National University have observed the fragmentation and recombination of 16 chough groups in recent years. In each case, the scenario unfold in precisely the same manner. An adult female and her sisters will choose which males they wish to join their group. The females unite with as many male fac tions as it takes (usually groups of broth ers) until they have at least seven birds in the group (the minimum group size needed to breed successfilly). There-
after, all other factions are turned away This behaviour not only suggests that choughs are numerically competent but shows they are capable of making sensible decisions. Not bad for birds that are affectionately known by some as silly buggers
There is an old phase in science, particularly apt here that expectation colours observation. In other words, we can only find the answers to the guestions that we ourselves are prepared to ask. For centuries we have been philosophically blinkered to the idea that other amimals may be intellectually capable too. But, as the Prince of Denmark says in Shakesperre's Hamlet. "There are more things in heaven and earth. Horatio, than are dreant of in your philosophy". In recent years, scientists have dared to ask new questions of the amimals on this planet. The answers seem to be telling us the same thing: that we humans are not alone when it comes to being bird-brained.

FURTHER READING

Boldud, (:.R.I. Heinsohn, R. \&o

Black-breasted Buzzards (Hamirostra melanosternon) drop stones on the nests of Emus, Bustards and Brolgas to open their eggs.

Cockburn, A., 1997. Deception by helpers in cooperatively-breeding white-winged choughs and its experimental mamipulation Behav: Ecol. Sociobiol. 88: 295-3(1)?

Clapton, N.S., Ciriffiths, 1) P?, Emery, N.I. \&e Dickinson, A., 2()) 1. Elements of episodic-like memery' in amimals. Phal Trans. R. Soc. Lond. 356: 1-48.3-1491

Diversification and ammulative erolution in Vew' Caledonian irour tool mamuficture: Proc. R. Soc. Lond. 27(): 867-874.

Lefehure, L.., Guwiola, A., Dausoln, Timmermams, S., Ros:u, L. \& Killal, I? 1998. Fecdin! imnomations and foredrain size in Australiun birds. Behaviour 135 1077-1097.

1) R CHRO, BOIANI) IS AN Associath LECTURER IN THE S(Hoc)L OF BOTAN ant) Zoolog.iy, Australian
Nationai Univergty, (:aniberra

IN A LANI) WHIRE ECOSYSTEM reeter on the verge of collapse. the ecology of extinct communities and the forces that made or broke them are essental background reading. And, because of their importance as envirommental indicators. undersanding the roles played by extinct predators is of particular signiticance. Unfortumately, lere in Australia. unravelling the history of carmivore
ccology has proven difficult and tumultuous.
Until recently: scientists could not even agree over which carniveres dom-inated-mammals or reprikes. In the 19th century, Sir Richard Owen was convinced that during the plestocene. around two million to 10.000 years ago. Australian mirrored the great plains of Africa, where giant mammalian herbivores were regulated by ferocious mam-

With a head the size of a Lioness's and a dentition dedicated to only two functions, killing and eating flesh, Australia's marsupial lion Thylacoleo carnifex was the most specialised mammalian hypercarnivore of all time and singularly unsuited to a scavenging role.

Although the subject of much hyperbole, the giant goanna Megalania prisca certainly grew to impressive dimensions. But, on average, it was probably less than $\mathbf{1 6 0}$ kilograms and its food requirements would have been those of a 16 -kilogram marsupial. Unlike the largest marsupial carnivore of the time, and like all living goannas, it was well equipped for life as a scavenger.

malian carnivores. ()nly here of cont the mammals had poudles. Howere by the end of the ?ath century the vision of plestocence ecology wa tarmed on its head. Millions of iear atier the hevdar of outsized reptile had conded. ()wens magniticent mampp 1 a super-predators got retrospectivel chased by cold-blooded monster in 13-grade rerun of the Age of ()inos.and: The fitet that this belate reptilian comeback took place withut the lant 6.5 million vears (the Age of Mammals') gave the parable real shod salue, It has been agyed that low prot

ductivity in Australia explained this dommance of reptiles. The island continent just couldn't support big, fuelhungry mammals, particularly meateating ones. Consequently, large carmivore niches were tilled by more economical reptiles-or so the story went.

TLiI. NOIICN OFREPTIIIAN IOMIINANCI began about 28 years ago with published estimates for the maximum size of Australias giant, extinct go..11ma. Megalanta prisca. The numbers were impressive - seven metres long and 620 kilograms. Max Hecht, who generated
these figures while at the University of New York, concluded that Megalamia was the domimant predator of Pleistoccene Australia. He reinfored his position by sidelining our biggest mammalian camivore, the marsupial lion Thylacoleo carnifere in a sense both Owen and Hecht were misguded, Although Owen described Megalahia as a carmivore, he later came to veew it as a herbivore. Hecht on the other hand was influenced by prior assertions that Thy'lacoler was not a carnivore but a trumped-up, cucumber-dicer, By I9s? it was clear that they were both very

This South American dwarf caiman has most of the features used to argue for a terrestrial habit in the supposedly terrestrial Ice Age crocodile Quinkana, but although they may spend more time on land than most of their living cousins, dwarf caimans remain semi-aquatic animals.
woung. But 1982 was too late the -myth of reptilim dommation was already firmly rooted m palaco-folklore By the end of the 2ath century Migalamat was somewhere between one and föur tomnes!
Recently I have re-exammed Hechti: mass estimates and discovered problems with his methods. For example, the the

tres of seven metres and 6? 0 kilograms were based on extrapolations from a singre toe-bone, which, according to Ralph Molnar (Queensland Museum). probably didn't even belong to Megaramia. But more importantly, Hechts numbers were only for maximum dimensions. Most species throw up freakish outliers, especially reptiles. which unlike mammals grow continuously throughout life. But real ecological dominance should be based on averages. Also, determining the actual impact of a species depends on how much individuals ate and their total biomass. Given that a reptile typically eats around one-tenth the amount of a sim-ilar-sized mammal, then unless Mesald-
nim Was, on average an order of magnitude larger or more common, its impact was clearly less significant than that of the pouched lion.

Although Hecht didn't estimate averages. he did present the necessary data and, using these, I calculated an average length for Megalania of 3.45 metres and an are age weight of less than 160 kilograms.

Interestingly, while Megalania kept growing in mass, Thylacoleo got caught in a whirlpool of ever-shrinking guessti-mates-ultimately our marsupial 'loo no was reduced to the dimensions of a Kelpie Dog. But recent predictions put the average Thylacoleo at around $I(0)$ to 1.30 kilograms (see "Move ()yer Sabre-

Although similar in terms of head-body length to a Leopard, comparing this Pleistocene marsupial lion to a Leopard is like comparing Elle MacPherson to a silverback Gorilla. At around 104 kilograms on average, T. carnifex was more than twice as heavy.

Reconstruction of the supposedly 'terrestrial' crocodile Quinkana fortirostrum. Its landlobbing lifestyle, however, is debatable.

tooth Tiger", Nature .Aust. Spring z()(1). So, while it appears that Phylacole was around 4 (0) per cent smaller on average, it was indisputably far more voracious and widespread than Megalamia. Moreover, Thylacoleo's range is less likely to have been constrained by the frequent cold snaps that punctuated the Ice Ages. Lastly: Thylacoleo probably took more live prey relative to carrion. When all these factors are considered there can be little doubt that the marshpal lion had a much greater impact on Australia's large vertebrate populations than the big gram.

Singe Hechits study in 1975. two more Pleistocene reptiles have been offered as pretenders in the big, torrestrial carnivore game. The first was a snake, Homambi maracoortensis: (see "The Serpentine Dreantime". Nature Aust. Summer 2001-20(02). John Barrie (University of Adelaide) estimated its maximum dimensions to have been just over six metres and 250 kilograms. Orthers have suggested it was a wallaby-e.ater ivith a head the size of a shovel. More recently; John Scanlon (South) Australian Museums) offered a total maximum length of over five metres and madimullil sk tl length of 13.5 centimetres (small as shovels go). Still, these figures are all maxima. I have calculated the average at well under 13 kilograms.
Barrie concluded that the combinatimon of small teeth, weak jaws and the
likelihood that it couldn't constrict would have limited. Womambi to taking small prey. We now also know that it couldn't fully unhinge its jaws, which means that unlike modern snakes it could not have swallowed items much larger than its own head. Lastly, it was rare and occupied a relatively restricted area. Barrie's best guess: it ate fish. Wonambi was no super-predator.
The remaining ‘glant’ tlagged in support of reptilian domination for this period is the 'terrestrial' crocodile Quinkann fortirostrum. Molnar described it in 1981 based on part of a snout. Estimates by others put it at three metres long and 200 kilograms. Whether these are mean or maximum dimensions is unclear, but either way 2()() kilograms seems unlikely for a three-metre crocodilian. At this length, Saltwater Crocodiles (Ciocodjlus porosus) average 9 . kilograms and a 1.5 -metre Salty averages only 9.5 kilograms.
Quinkima has been accepted as a landlubbing crocodile, although no postcranal remains are known. Arguments for a terrestrial lifestyle lean heavily on similarity in skull and tooth shape with a northern hemisphere gemus. Prisfichampsus: But according to Steve Salisbury (University of Queensland), whether Pristichampsus lived on land remains debated and its relationship to Australian species is unclear. In addition, four of the five features invoked to support a terrestrial habit for Quinkana are found in the living South American dwarf camans (Paleosuchus spp.)... which, although sometimes more terrestrial than most other crocodiles, are still semi-aquatic. Other 'evidence' for terrestriality is the presence of some Quinkana in caves associated with terrestrial fama. But these finds were close to major watercourses and living crocodiles may travel dozens of kilometres overland. According to Rick Shine (University of Sydney) they often hole up in caves when stressed. Perhaps Quinkana spent more time on land than most living crocodilians, but it wasn't terrestrial, and so cannot be fairly treated as a direct competitor with terrestrial mammalian carnivores.
This brings us to an interesting point. Clearly, aquatic reptiles impact on terrestrial fatnas if they take terrestrial

The largest Wonambi undoubtedly grew to over five metres, but it had relatively weak jaws, a restricted range and on average weighed in at closer to 12 kilograms. Bats, rats or fish were more likely prey than wallabies.
prey. In addition to Quinkana and the Saltwater Crocodile. Pleistocene Australia was home to another large semiaquatic crocodile, Pallimmarchus pollens. It may well be that together the direct impact of these reptiles on terrestrial vertebrates was comparable to, or even greater than, that of mammalian carnivores. However, if we are going to consider the role of semi-aquatic reptiles, then this must be balanced against the fact that even today: on every inhabited continent, the largest predators on terrestrial vertebrates are cold-blooded. South America, in particular, is home to eight species of crocodile and two species of giant snake. My point here is that there is no compelling reason to believe that Australia was atypical with respect to the relative significance of reptilian and mammalian carnivores.

IN SUMmark, I suggest hhat over the past century, the role of Australia's fossil reptiles has been exaggerated. while that of our marsupial carnivores has been undersold. The image of an incongruous continent dominated by reptiles in the Age of Mammals has real curiosity value and this has helped propel the idea, but it is a castle in the air. Certainly the evolution of Australia's biota was constrained by a unique constellation of factors. Low productivity
may be one of these, but many other influences must be considered. These range from extreme isolation to an extraordinary lack of geographic relief and umrivalled combustibility: Exploding the "myth of reptilian domination" is a small step to understanding what has made life in Australia tick. Wee still have a long way to go. \square

FURTHER READING

Wroc, S., 20022. A review of mammalian and reptilian carnibore colology in Australian fossil faunas, and factors influenting their diversit): the meth of reptilian domination and its broader rimifications: Aust. I. Zool. 50): 1-2t. |Free download amilable at hetp://www.publish.csiro.au/journals/ article.cfin: $F=Z(0) 1053 . p d f)$

> Wroe, S., Myers, T., Seebacher, E:Kicar, B., Gillespie, A., Crowther, M. Er Salishur): S., 2000.3. An alternative method for predictings body' mass: the case of the Peistocene marsupial lion. Paleobiology 29(.3): 40.3-411.

Dr Stephen Wrob is a

Palafontol ogist resiarching. CARNIVOROUS MARSUIIALS IN THE INSTITUTE FOR WIIDHIE Research, School of Blolog, ical SCilences at tile Universtiy of Syidney.

II IS JUSI AFTER 3 AM IN Novamiber 20) (ol and, groggy from sleep deprivation. I stagger down to Flying Fish Cove. It is nearing the high tide on the last puarter of the moon. My torchlight illummates rocks along the shoreline which are covered in fomale Red Crabs ving for position to release their egogs. Up to my knees in lukewarm water. I focus on a group of (rabs through the viewfinder of my camera. I wonder for how much longer this event will continue. for Flying Fish Cove is one of only a few places left where you can witness Red Crabs spawning in these numbers. The rest of the island has been taken over by a small invasive ant, the Yellow Corazy Ant (Amoplolepis gracilipes). Although I didn't know it at the time, this story has a happy ending. and is a remarkable example of how a team of dedicated people can reverse a potentially catastrophic ecosystem imbalance. It is especially portentous as Yellow C.razy Ant supercolonies are now emerging in much the same way across northern

THIS IS A remarkable example of how a team of dedicated people can reverse a potentially catastrophic

ecosystem imbalance.

Australia.
Christmas Island is located 36,11 kilometres south of western lava in the Indian Ocean. Protected from huge ocean swells by rugged sea cliffis, and covered in thick rainforest. Christmas Island is home to a unique fama. Dominated below the forest canopy by land cralss and above by its seabirds, what the forest of Christmas Island lacks in diversity it makes up for by the level of
endemism. Of the 13 species of land crabs that inhabit the island, two are found only here, the Red Crab (Gerar. coidea natalis) and Jackson's Crab (Sesarma jacksomi). The crabs occupy niches filled by vertelrates in forests elsewhere. Of the eight species of seabirds, again two are endemic-Abbott's Booby (Papasula ahborti) and the Christmas Frigatelird (Fregata andrewsi). Christmas Istand also has its very own imperialpigeon, goshawk, hawk-owl and thrush. All have developed traits that make them unique to this island ecosystem. Yet on Christmas Island, once thought of as a sanctuary for these species, none was immune from the effects of the crazy ant invasion.

WHAT ARE CRAZY ANTS: Where did they come from: What effiects were they having on wildlife and the forest? To help us understand all this. I hooked up with Kirsti Abbott-a doctoral student from the Centre for the Analysis and Management of Biological Invasions at Monash University

Christmas Island is one of the last strongholds of the massive Robber Crab. Growing up to five kilograms and living as long as 70 years, Yellow Crazy Ants impacted heavily on their populations.

Yellow Crazy Ants attending lac scales on a sapling at Waddel Hill. The ants farm the sapsucking scale insects, providing a protection and distribution service in return for a sugary secretion from the scales.
in Melbourne. She is investigating the relationship between water-stressed plants, scale insects and Yellow Caze Ant supercolonies.
As we descend beneath the shadows of the forest camopy, along a bumpy winding track leading to Abbott's experimental sites, I catch glimpses of the Christmas Island ranforest of old. Huge, buttressed tree trunks stand down from the canopy like the mighty: grey legs of some long-forgotten dinosaur. Between them there is a seattering of leaf litter broken occasionally by the tips of razor-sharp, limestone pimacles.
Much of the forest structure is maintained by Red Crabs. Red Crabs are the forest's gardeners, turning the soil, dearing and recycling leaf litter, and eating fruits and seeds. By their sheer numbers, estimated at 60 million during the 1980s. Red Crabs keep the island clean. Because they consume seeds and fruits. few seedlings are able to gemmate, and so the forest floor is free from clutter. Remove this primary herbivore from the system and voila! seeds geminate, leaf litter builds up and sapling of more invasive species quickly colonise these areas.
At Waddel Hill, one of Abbott's study sites, the usual forest structure has changed. There are countless sapling trees, and underfoot lies a thick, uncharacteristic carpet of yellowing leaves. Brushing aside an area of leaf litter, Abbott throws down a small plastic square. She counts the ants that cross this in 30 seconds. I listen to her frantic clicking of the counter as ant after ant scampers across the cleared patch. Fifty ants in 30 seconds define a supercolony. Abbott has just passed $14(0)$! This smple but effective test has been used throughout the island to monitor the spread of ant supercolonies.
Yellow Crazy Ants arrived over 80 years ago, most likely attached to cargo at about the same time they are thought to have made it to the mamland. Widespread throughout the Indo-pacific region, they have proven to be remark-
 NATURE AUSTRALIA SUMMER 2003-2010-
able colonisers, famning out from their native West Africa. They owe their success to a number of behavioural trats that encourage the development of supercolonies. First, they spread from the primary colony by budding off with new females. Second, new colonies establish relatively close (within three metres) to each other. Third, each colony is multigueened, with each queen producing thousands of egrs. Finally, each colony has no distinct territory, so that workers show no hostility towards members of other colonies of the same species. In this way: under favourable conditions. Yellow (Cazy Ant colonies can spread to form massive supercolonies.
However, it is the mutualistic relationship between the Yellow Crazy Ant and the lac scale Tachardina durantioca (a sap-sucking insect in the family Kerriidae) that may hold the key to under-
standing the spread of these ants. The ants gain valuable energy from honeydew excreted by the lac scales as a byproduct of their sap-sucking. In return, the scale insects gain protection from their natural enemies, and are transported from plant to plant by the ants. Lac scales in areas where Yellow Cary Ants have not invaded are virtually non-existent along the branches of trees. However, in supercolone areas, densities of adult lac scales can reach more than 25 per five-centimetre section.

Why did it take 80 years for Yellow Cazy Ants to take over? The crux of Abbott's main hypothesis is that the lac saale population exploded first, primarily as a result of plant water stress. Plants under stress produce a scale-friendly: nitrogen-rich sap. Abbott believes that these conditions may have prevailed on Christmas Island during the prolonged

Yellow Crazy Ant

Anoplolepis gracilipes

Classification

Class Hymenoptera, family Formicidae.

Identification

Medium-sized (length 4 mm), characterised by pale yellow/orange colour, long legs and antennae, and erratic movements

Habitat and Distribution

Inhabits tropical regions throughout West Africa. Builds subterranean nests at bases of trees or rotting logs. Introduced to East Africa and islands throughout Indo-pacific.

Biology

Active 24 hours per day. Forms groups of many multi-queened colonies (supercolonies) over large ($1-\mathrm{km}^{2}$) areas. New colonies formed by budding (new queens establish nests within 3 m) but also disperse through alate (winged) individuals. Farms honeydew from scale insects, and preys on most ground fauna. Sprays formic acid when disturbed

$1996-1997$ drought. With more lac scales to provide honeydew for ants Yellow Crazy Ants were then able to build up their colonies and spread to new areas as well as carry lac sales to new plants. So successful were they that ant-infested areas increased from three per cent in 1999 to 25 per cent in September 2002

There is also another catastrophic process affecting the forest on Christmas Island-dieback. Increased densities of scale throughout 'anted' parts of the island have resulted in excess honevdew dripping onto the folliage of plants. This provides an ideal enviromment for the spread of sooty mould. which cores leaves and blocks lenf stomata. reducing photosynthesis and leading to dieback

in the canopy. The extra light in turn encourages the growth of seedlings and invasion of weed species. Burrowing by crazy ants to create nests at the bases of trees further increases the likelihood of plant disease.

Awell as connsuming; sugarky raterial from scale, Yellow Crazy Ants are voracious predators. They attack other insects and scavenge the rennains of birds or crabs.
Yellow Crazy Ants don't actually kill crabs by eating them alive. Instead, the crabs are overcome by formic acid. sprayed by the ants in defence when an intruder enters their territory. Eventually they become blinded by it, their eyes turning from a rich dark and glossy
black to a dull grey. And as the effects of the formic acid continue to take hold. the crabs undergo water stress, literally frothing brown around the mouthparts. Abbott and I walk into a heavily infested region on one of the upper terraces at her study site on Circuit Road. Crabs no longer inhabit the area, and have not done so for years. But it is the amnual spawning migration, and thousands of crabs that live in the forest above this site must pass through it on their way to the lower-shore terraces and beaches where they will breed. A we walk through the thick leaf litter we notice crab) carcass after (rabl carcass. Gone is the bright red of their carapace: instend they are a dull red-black. The smell of rotting flesh is overwhelming.

A typical view across uninvaded Christmas Island rainforest. In areas free of ants the Red Crabs maintain forest structure by clearing leat litter and fallen fruit, giving the forest an uncluttered understorey.

Occasionally we stumble across a moving crab but on our approach, we know it has lost the battle. Instead of scurrying away, it just plods on. And if you pick it up, it feels limp in your hands.
In other island ecosystems. Yellow Crazy Ants have had a major impact on seabird populations. Yellow (arazy Ants were first moticed on Bird Ishand. Seschelles, in 1991. By 1998 the ants had infested a colony of 60,0000 Sooty Terns (Sterma fuscata), a ground-nesting species, causing them to aboundon their nests. Small chicks of the Common

During September 2002 a helicopter was used to deploy Fipronil-laced ant bait over impenetrable areas of Christmas Island.

Noddy (Anous stolidus) and the treenesting White Tern (Gygis alba) were also killed by crazy ants. Although not quantified on Christmas Island. birds nesting in areas infested with Yellow Crazy Ants are likely to experience similar declines in breeding performance. The ants may also indirectly place pressure on those birds that depend on Red Crabs (such as the Christmas Island Hawk-owl) or insects (Christmas Island Goshawk and Thrush) for food.

As a population biologist, the severity of the problem faced by wildlife on Christmas Island was very clear. Surprisingly to many, both seabirds and land crabs are long-lived animals. It is a reproductive strategy that hedges against the occasional poor-breeding conditions. Red Crabs are thought to live as long as 20 years, Robber Crabs (Birgus latro) for 70 years, and boobies $2(1-30$ years. Both crabs and seabirds delay breeding until they are three or four years of age. The parallels deviate somewhat here, as crabs produce thousands of eggs each year while most seabirds lay only a single egg. However, the unpredictability of the return of crablings, and the often-poor foraging conditions experienced by seabirds, means that in
some years recrutment to the populations declines. Reproductive failure caused by the invasion of the Yellow Crazy Ant may well have tipped the balance.

The dramatic increase in the spread of crazy ant supercolonies on Christmas Island is now the subject of an intensive baiting program coordinated by Parks Australia and the Monash University team. Parks Australia staff have been distributing Fipronil-laced bait (made up of a gramular fish meal) through many parts of the infested forest. Fipronil was found to have little detrimental effect on mative wildlife and no effect on water supplies. One of the greatest hurdles faced by the boiting program was the extensive areas of rugged terrain on Christmas Island impenetrable on foot. so ann aerial baiting program was commenced in September 2002. Within a month of the baiting, ant activity in those areas dropped to almost zero. And it now appears that the mutualism between crazy ants and lac soales has broken down, removing the primary energy source ants once exploited with such drastic consequences

My partner and our young son sit on Greta Beach. Once these diffs were

A curious juvenile Christmas Island Goshawk (Accipiter fasciatus natalis). Although known to prey on other birds, goshawks also forage upon invertebrates. One effect of the Yellow Crazy Ant has been a decline in invertebrate numbers in forest areas. The flow-on effect to endemic species such as the goshawk remain to be seen.
painted red with migrating crabs. We stare at a lone female Red Crab sheltering under a rock. We haven't missed the migration, it's just that the areas above are infested with ants. Back home 12 months later I cast my mind back to this scene. The ants on Christmas Island now appear to be under control, but what of the long-term implications for the Red Crab? And with reports of crazy ant supercolonies forming across northern Australia, a far greater expanse of wilderness is at risk. Hopefully the experience on Christmas Island will provide the expertise required to ensure that the outbreak on the mainland does not swarm out of control.

FURTHER READING

Environment Australia, 2001. Parks and Reserves. Christmas lsland National Park. Yellow chaz 'ants. http://wwwea.govau/ parks/christmas/fama/crazy:html.

Grectn, P.T., O'Dowd, D)I. Ě Lake, PS 1997. Comtrol of seedling recruitment b) land crabs in rain forest on a remote oceanic island. Ecology 78(8): 2472-2486.

Haines, I.H. \& Haines, I. B., 1978. Pest stutus of the irasy ant, Anoplolepis longipes (Jerdon) (Hymenoptem: Formicidae', in the Se ${ }^{\prime}$ chelles. Bull. Ent. Res. 68(4): 627-6.38.

Rav, N.S. \&̌ lecresh. G.K., 1991. Some abservations on the hiolog') and behaviour e! araz) 'am, Anoplolepis longipes (Jeridun) (H)'menoptera: Formicidace. Entonnon $16(4): 261-267$.
I)R (.HRISTOPIIER SURMAN IS A (ONSUITANT EGOLOCISI AND) SCIENCE (WRITER, BASEI) IN FREMANTLE. WFSIERN AUSTRALIA. HE IS PARIICUIARIY INTIRISTEI) IN (ONSERVATION ANI) P(OPULATION BIO) ()(iY. ANI) HAS A PASSION FOR NATURAI-HISIORY HOTOC:RAIPHY.

reptile magnetism
by GREG HAROLD

Western Spiny-tailed Gecko (Strophurus strophurus)

Nullarbor Bearded Dragon (Pogona nullarbor).

Pygmy Spiny-tailed Skink (Egernia depressa).

Blood-sucking spiders

Why would a spider want to drink bood in the first place?

HEARIN(; ABC)UT THE FEEI)IN(; habits of Evarcha culicinora reminded me of a line from the 1ソ31 tilm "Dracula". Soon after Renfied, a visitor from England, arrives at Dracula's castle, he struggles to get through an momaturally large spider web spamming a staircase. A bemused Dracula offers a few words of wisdom: "The spider spmoning his web for the unwary fly: The blood is the lite, Mr Renfield".

Eivarcha culiciora is living testimony to these words, for it is a jumping spider that sucks the life out of 'flies', especially mosquitoes that have been feeding on vertebrate blood, inclading that of humans. This tiny vampire lives around Lake Victoria in Kenya and Uganda where the air is filled with countless
midges and mosyuitoes. Robert Jackson, from the University of Canterbury in New Zealand, is an expert on jump)ing spiders (family Salticidace). When he first spotted Eiariha, he never imagined this tiny eight-millimetre spider with a grey-brown body and red face would lead him inte the world of arachmid vampirism. For the last eight vears he has been a regular visitor to Mbita Point on the shores of Latie Victoria, where the International Centre for Insect Physiology and Ecology (IC:IPE) runs its Malaria Vector Program. With technicians at Mbita Point and students at the University of Conterbury: Jackson's main interest with Eidarla is in understanding vision-based cognition in miniature amimals. IC:IPE, on the other hand, is especially interested in Eparcha
more complete picture of what it is seemlly. This takes time, but one ide.a beillg investigated is that the spider has evolved a way of speeding up the process. by searching for specific details in the image. Imagine looking at the Mond Lisa with binoculars. If you are expecting to see a painting, you only: need to see the month to know its her. gimilarly: the shape of a leg or some other feature may be all the information a jumping spider needs before it knows what it is looking at. The smell of blood seems to be what makes the sprider expect to see a mosquito. but what visual cues does Evaricha use to identifị by sight its preferred prey: a blood-fed female mosquito?
To answer this question, Jackson and his collengues appear to have been mspired by another famous figure of horror films, Dr Frankenstein. They present Evarcha with dead mosicquitoes mounted in life-like poses on corks. The bodies are often a combination of different body parts taken from male and female mosquitoes. They then sit back to see which composite creatures the spiders try to attack. The experiments seem to be showing that the antemmae and shape of the abdomen are especially important features. Males have hairy antemnae with a feathery look. Females don't have hairy antenmae. Blood-fed females have distended abdomens and Evarcha is more likely to attack these females than ones that have slender abdomens. However, a fat-bellied female with a male's feathery antennae is less likely to be attacked than a fat-bellied female with her own antennac, but more likely to be attacked than an intact male or an mitact female with a slender abdomen. Unlike Dr Frankenstein, Jackson and co-workers do not try to reanimate the dead; instend they animate virtual mosquitoes for Evarcha to watch on a miliniature TV screen. The spider Watches these digital mosquito and meras as if they were the real thing and this allows the researchers to manipulate them more precisely than stitching together mosquito body
parts.
Although Euarcha leads a life with
vallpipicic Vallpiric overtones, Dracula is at least metaphorically a spider, as he spins a

web of deceit for the unwary Renfield and makes him his slave. Like his master, he develops a craving for blood, but like Ebarcha, he prefers it packaged in a fly. He pleads to D Dacula, "You will see that I get lives, not human lives but small ones, with blood in them". Well. no matter how you get it the blood is the life, Mr Renfield. \square

FURTHER READING

Harland, D). P. Ef lackson, R.R., 2()()2.
Influence of cues from antertor medtal efes of virtual prey on Portia fimbriata. an arancophlagic jumpings spider. J. Exp. Biol. 2(1)5: 1861-1868.

Pain, S., 20)(I)2. Bloodlust. New Scientist $1+1$ necomber 2()()2: 4.7-77

Evarcha culicivora is a jumping spider that sucks the life out of 'flies', especially mosquitoes that have been feeding on vertebrate blood, including that of humans. This tiny vampire lives around Lake Victoria in Kenya and Uganda.

Wesolonski, W. \&lackson, R.R., 2003. Evarcha culicinora sp. nov, a mesquitocatinge inmping spider (Arnncae: Salticidac) from Eist Afficial. Annales Zoologici 53: 3.5-3.38.

1) S Simon 1). Pollari) IS (Curator or Invirtebrate Zonociy at Cantirbury Muslum, anid Sinior Fablow in intis Scheol or
Borlociecal sciencis at the
Universtiy of Canterbury: in
Chiristchurch. New Zealani).

BEING HUMAN

Hunter, scavenger, grandmother, yam

The most dependable and regular food deliveries would have come from females foraging for plants like rams.

All families have their secrets, and it is the same even for our oldest. For example, we thought heads of the earliest human families were men who went out hunting to bring back food for the wife and kids. Indeed meat from the hunt has been touted as the critical ingredient that set us apart from our primitive ancestors. fielled larger brains and provided the recipe for family life as we know it. A proud father bringing home the family meat order is the central image of the 'hunting hypothesis', and accepted by many as the driving force for the evolution of higher intelligence, better technology, larger body size, dedicated mothering. dependent children, nuclear families, the sexual division of labour, and rapid expansion of homan ancestors from Africa to eastern Asia. It all happened thanks to the first hunters, our founding fathers... or so the story goes.

Now the secret is out. Combining the results of archaeological and modern cultural studies, James O Comnell (University of Utah) and colleagues have revealed what really happened. First of all, the 'hunters' were most likely scavengers, snatching bits of carcass from fierce predators. And furthermore, what meat they managed to scrounge was not taken home, but processed on the spot or close by.

To gain insight into the ecology and behaviour of early humans about two million years ago, O'Comnell's team studied the Hadza, a small population of traditional honter-gatherers that live in arid savanna woodlands in Tanzania. While meat provides Hadza families with about half the total kilojoules
needed over a year, hunting or scavenging big game is far from reliable on a day-to-day basis. Hadza men on average acquire only one large kill for every month of hunting days-certainly not enough to feed the family. And, if these modern hunters with greatly superior technological weaponry (bows with projectile-tipped arrows and spears) can-

> To gain insight into the ecology' and behaviour of early' humans, O'Connell's team studied the Hadza, a population of hunter-gatherers that live in Tanzania.

not achieve high hunting and scavenging success, then how could our ancient ancestors armed with a few rocks and faced by even fiercer predators?
Work with modern foraging groups also hints at how our ancestors might have butchered, packaged and transported scavenged or hunted prey. For example, some researchers have argled that limb bones would have been car-

BY RICHARD FULLAGAR

ried away by hunters with meat attached-a kind of inside-out carrybag. But this is not what modern hunters do. Instead they strip meat off the large bones, which they find too heavy to lug more than a few metres. O'Comnell and his team carefully analysed bones left behind by the Hadza at their temporary butchering stands. They studied the range of aninlals, the number of different bone parts, the damage and cut marks on bone, where the bones accumulated on the landscape, and how often large carcasses were acquired. They then compared this with 19 archaeological sites in the East African Rift Valley, dated between 1.2 and 2.6 million years old, all with large mammal bones (mostly cow-sized ungulates) and all but two with stone artefacts attributed to Homo erectus $(=$ ergaster).
Most of the archaeological sites contained the heaty head and limb bones. which, according to modern studies. would indicate they were not that far from where the anmals were originally killed. Bone breakage patterns, and the relative numbers of cuts and carnivore tooth marks. suggest scavenging rather than human hunting. and in some cases indicate that early humans aggressively snatched (rather than passively acquired) carcasses from predators. The high frequency of pelvic bones also suggests carnivores were driven off soon atter the kill, simply because hips are very meatrich (some more than others, as we all know) and the first bits to be consumed. In most cases, though, it is not clear whether early humans or other scavenging carnivores got to the kill site first. Sometmes, the first human meat thieves (all worthy of Darwin Awards) contributed themselves to the bone pile.
The original idea that these archae(o) logical sites represented home bases was based not only on the erroneous limb-bones-as-carry-bags idea, but on the high number and taxonomic diversity of the bones, which were thought to have been collected from various habitats and amassed in one central (home) location. However, modern Hadza butchering stancts also share these features. Moreover, both modern and wht hutchering sites are found near streams, and streans attract many thirsty amimals and hungry' NAIURI AUSTRAIIA SUAMIR 2013-2010t
predators looking for an casy meal. Hadza never camp by streams because it is simply too dangerous to do so. We can therefore assume that the early archaeological sites were not home bases either.
The old theory argued that change to a cooler, drier climate led to the spread of game-rich savannas, which favoured big-game hunting. as indicated by the appearance of large and diverse bone accumulations in the early Pleistocene archaeological record. Moreover, male provisioning of meat led to big brains. intelligence. large size and other distinctively human traits. The new theory, however, argues that climatic change made for a patchier enviromment with sattered water holes. thus presenting more concentrated scavenging opportunities for early homans and, importantly: making them more archaeologically visible. In other words. early humans didn't all of a sudden start eating meat. They and the ir ancestors were probably picking at it for ages; it 's just that evidence for it becomes more obvious around this time. And if true, then meat was probably not the prime mover in this phase of human evolution.
So, if men werent 'bringing home the bacon, who were? Women. O'Comnell and colleagues propose that the most dependable and regular food deliveries would have come from females foraging for plants like vams, which have been superabundant on the African landscape for millions of years Female foraging patterns, particularly by grandmothers, would have freed daughters to have more children, and favoured the evolution of postmenopausal longevity (where women live beyond their reproductive years). Delayed maturity - a characteristic first indicated by tooth eruption schedules of H_{0} no crectus children-and increased body size (from a longer period of growth) would have followed as matural consequences. Male hunting is nommally invoked to explain the evolution of these distinctively human life-history traits, but they can be accounted for equally by female foraging.
Finally, why did men bother in the pursuit of meat if it wasn't to support the family: Perhaps it was less for the food than for the spectacle. Snatching

meals from ferocious lions would have been a great way to prove a man's competitive ability to other males, earming him prestige, high status and, ultimately: mating partners (see "Show-offs and Pay-offs". Naturc Aust. Autumin 2(0)?

These ancient family secrets man be disturbing for the male breadwinners of today. For example, how much of their act is just competitive display for status? Maybe the new theory will be shougged off", as a bit of tinkering with the historical details. Certainly for half the worlds population, the idea of Woman the Gatherer, as opposed to Man the Hunter. being the driving force for human evolution will come as no surprise.

FURTHER READING

()'Connell, I.F., Hawkes, K. E IBhuron

A 65 -year-old Hadza woman from Tanzania lifts rocks in pursuit of tubers. Foraging by women, especially grandmothers, may have been the driving force behind the evolution of modern humans.

Jones, N: ©., 1999. Gramdmotherin! sumd the ceshution of Homo crectus. J. Hum. Evol. 36: 461-485

[^1]DR RICHARI) FUI LaGAR is a SI NIOR Research Fhilow in Archabologiy al ihie University of Syidniy. Heis PARTICUIARIY INTERLSTEI IN ARCHAEOLOCICAI INIICATORSOF IIUMAN BIEHAVIOUR

True blue

()ne of the richest colours, and historically most prized. of plam dyes is indigo.

IN THE IAII SEVINTIES, I IDYEI MY post-hippy shoulder bag orange by boiling it in a slumy of grey-green lichens. These were lichens that had once clothed the few grante rocks stranded in farmland around Yapeen, in central Victoria. I soon realised that the shoulder bag as a male fashion accersonry, and lichens as the bass of a dyeing modustry, were misustamable, although l'm sure both will come back, eventually. What continues to intriguc me, though, is the fact that a greeen platt, on lichen, produces an orange dye.

It turns out that the green of chlorephyll, present in all green plants and lichems, retains its colour for only a few hours after extraction. ()ther chemacals. often masked in the living plant by chlorophyll, are longer-lasting. although many require the addition of a fixing agent, called a 'mordant', such as potassium aluminium sulphate (alum). One of the mehest colours, and historically most prized, of plant dyes is imdigo. It wakes aloout a month of soaking and fermentation to extract a dark blue prectpitate from the green stems and

years.

leaves of certain tropical Indegofera species. And that's just the start of the colour transformation

1) ried patties of indige-precipitate carn be stored for manly years, but they are eventually crushed and relydrated for a second fermentation during which the colour changes from blue to yellow Cloth soaked for a few manutes in this solution emerges green, turning blue as soon as it leaves the alkaline solution and comes in contact with arr. The cloth can be redipped up to five times for a darker blue, and once air-dried the colour will last as well as that of your fawourite blue jeans (which were once dyed with matural indig()). No mordant is required.
Indigo, or indicum, is extracted from a few species of Indigofer, but mostly: Dye Indigo (I. timetoria) in India and Asia, and Amil Indige (I. suffifutiosa) in South and Central America. It has been used as a dye for millemnia throughout Asia, but carly Europeans, without access to indigo, had to find altermatises for this most majestic of colours. The purple robes of R oman rulers, for example, were coloured from the mucous glands of local molluses (murexes)-1.200 individuals were reguired to produce each gram of purple dye. But once traders discovered indigo, Europeans couldn't get enough of it. Local plant substitutes such as "woad" or "pastel". from lantis timiterta. were inferior products, and the European empires of the time established indigo plantations in their American colonies, and in India. At its peak. 2(1), (1)() tomnes of indigo bricks passed through Marseilles into Europe and north Africa each year. In $18^{\prime} 97$, Ind dat had 1.7 million hectares planted with Indigefera timboria. Relatively fade-proot. it becalle the colour of choice for the uniforms of many armies. In a bizarte twist, some of these s.me armes fought wars over local shortages or oversupplics of indigo.

The indige trade in Autralial was more subdued. The first covernment Botamist of Victoria. Baron Ferdinand von Mueller, considered Indgeteme mimitirim to be a native of nothern Quem land, While there is a herbantim spect-
men from Endeavour Rever dated 1882. the species is now comsidered to have been introduced into Australia. possibly by Macassan traders before European settlement (but such arrivals are notorionsly difficult to prove). Blace is certainIs a colour used only in more recent Aboriginal art, and the first inhabitants of Australia don't seem to have extracted indige from Indigelera timetoria. if it was here. Nevertheless, this speciess and to a lesser extent Indigofera suffiutiosa. are well 'maturalised' today in northern Australia. In the absence of Indigotera timiteria from New South Wales. Covernor King was advised from Britain to cultivate and extract dye from our common local species. Australian Indige (I. allistralis). The dye extracted was described as "any other colour than indigo". and the industry never grew bevond a trial in 1803. Some vears later (but too late for King) it was demonstrated that good-quality indigo dye wuld be obtamed from the Australian species.

Other Australian mative plants do contain a range of dyes. mostly yellows, browns. greens and reds, but seldom blue or purple. One of the few reported sources of blue dye is the flower of the matwe-garden favourite 'Happy Wanderer", a cultivar of False Sarsaparilla (Hardenbergia violacea). The resulting colour has been described as egrevblue. There are other bluc-flowered Australian plants. and the blue-purple berries of species such as Ooray or Davidson's Plum (Dapidsonia pruriens). the Ash Quandong (Eleaocarpus reticulamis) and Bhue Lilly Pilly (S) $=y$ gium oleo smin) could be the source of some indi-go-like colours. However, if there are any such colours trapped within the green stems of Australian plants, they are not well known.

Back to the burgeoning world market in indigo. In the 20th century the demand for blue jeans and grey-blue worker's clothes could never have been met by natural indige cultivation alone An even greater impetus to find a synthetic analogne was the frustration of other European countries with the English domination of the world indigo market. A suitable altemative (which, is with most things in modern life, was a coal-tar or petroleum derivatave) was

Australian Indigo (Indigofera australis). Despite initial findings, good-quality indigo dye can be obtained from the Australian species.
discovered in 1880 by the (eeman chemist Adolf von Baever. It took a further ? () vears and millions of dollars of research for a cost-effective process to be developed.
Today. matural indige is still produced and used in small quantities. Because Indegefera extacts contain several other pignents, such as Indigo Red, the resultang colours are more complex and vartable, and to some more interesting and beautiful. The eolour of the dye also depends upon the local vamiant of Indigelem used and where it grows. The most sought-after hue in the Middle Ages, for example, came from a Baghdad plantation of Indigofera timetorm. And for some the coppery sheen produced after iroming or pounding doth deat from 'matural' indigo is particularly alloring. Undoubtedly mont devotees are drawn to a combimation of the
alcheme, the delight at watching the coloun transorm. and an apprectation that just as every individual plant is different, so every batch of indigo dye produces a different colour. \square

FURTHER READIN(;

Balfour-Piul, I., 1998, Indigo. British
Museunt Press: London.

Delamate, F E Guintan, B., I()O)
Colour: making and using dyes and pigments. Thumes is Hudsol: Lamdor.

The Handuenters and spinmer: (inild of Victoria, 1974. Dvemaking with Australian floma: Righ): Adelaide

DR TIM ENIWISII IS DIRICICR OF PIANT S (IENCLS AI IHIF ROYAT BolANI((ARLIHENS ANI) ID()MAIN Trubi, Sytiniy.

reviews

EUCLID: Eucalypts of Southern Australia
CD R()M. Second edtition by M.I.H. Brooker, A.I. Slee, J.R. Comnors and S.M. Duffy: CSIRO) Publishing, Vï., 2002, \$110.00 rip.

THIS (D) IS AN UPDAIE (OF TWO WBLI-KNOWN BOOKS. Ficld guide to chcolypts, Volumes I and 2. and supplants an earlier CD on eucalypts of the south-east. Eucalypts are often tricky to identify because there are so many species, and the EUCLII) interactive kev, plus clear photographs of leaves, flowers, firuits, seeds, trunks and whole trees in this C.I), are a great help. It is clearly organised and easy to use.

The technical language will deter non-botanists. In describing, for example, the leaves of Mottlecah (Emalyptus macrocarpa), these words are used: amplexicaul, cordate, concolorous, emarginate, intersectional, and subcrenulate. Although all but one of these words are defined in the glossary, this kind of language will dismay many amateurs for whom simpler words are often available, for example "stem-clasping' for 'amplexicaul'
The authors of this CD do not accept as valid all recently named eucalypt species, interpreting some as varieties of existing species. Nor do they accept the split from Eucalyptus of the genus Corymbia. Most naturalists won't complain about that. but botanists will. Even so, this is an immensely valuable reference for anyone serious about identifying eucalypts (and related Angophora species) in the southern half of Australia. covering 690 species in all.
-Tim Low

Handhook of Australian, New Zealand \& Antarctic Birds. Vol. 6. Pardalotes to Shrike-thrushes

The important Hanidbook of Austrailan. New Zealanis \& Antarctic Birds (HANZAB) series continnes with more passerines (songbirds) in this, the sixth, volume. It treats 1117 species, which include such well-known birds as pardalotes, scrubwrens, thornbills, robins, whipbirds, babblers, whistlers and shrike-thrushes, as well as many less familiar ones. All species are illustrated in 37 colour plates painted by several artists.

The layout of the species accounts remains the same as that in previous volumes. with sections on field identification, habitat. distribution and population, threats and human interactions, movements, food, social organisation and behaviour, voice, breeding, plumages and moult, measurements and weights, ageing and sexing, and geographical variation. These accounts serve to present not only what is known about these birds, but also what areas of information are lacking. Thus, some familar species receive 20 or more pages of text. whereas poorly known ones get as few as four pages. Hopefully, by identifying areas in which we are knowledge deficient, HANZAB will stimulate workers to investigate our less-known birds.

Although the price of these volumes is high, the series remains a critical reference for anvone who wants to know about Australian and New Zealand birds. It will fall outside the price range of many people, but no-one with a serious interest should lack access to it. With the next volume, this impressive work will be completed.
—Walter E. Boles
Ausiralian MUSEUM

How io Dunk a Doughnut: The Science of Everyday Life

MOST PEOPIF, ESPECIALIY THE Y(OUNG, WONI)ER ABOUT HOW ANI) WHY THINGS WYRK, and sometimes an answer from your parents of "just because" really isn't good enolugh. Len Fisher takes over from lazy or uminformed parents with How to dunk ad doughmut.
Fisher first hooks the reader by asking a seemingly basic question about something many of us might take for granted. He then explains in layman's terms the reasons behind the occurrence and for the scientifically minded, supplies a concise, quantitative explanation at the end of each chapter.

The book covers topics ranging from how to boil the perfect egg, to why some boomerangs wont come back, giving it content to spark the curiosity of everyone.

The EVOLUTION Of AUSTRALIA

THERE IS NO CONTINENT LIKE AUSTRALIA. FIND OUT WHY.

$\$ 24.95$ inc GST

ORDER NOW.

(SEE THE ORDER CARD INSIDE THE BACK COVER)

Spiders of Australia: Interactive Identification to Subfamily
By' R.I. Raven, B. C. Bachr and M.S. Harve): (CSIRC) Publishing/Australian Biological Resources Study 2()()2. 889.9 .5 mp

TIIS IS THE FIRSI (.D) INTERACOTIVE IIENTIFICATION KEY that deals with a major regional spider fama. Its coverage extends from Australia to Papua New Guinea and New Zealand. The key obviously represents a prodigious effort of research and compilation by the three authors. It is based upon web-integrated Lucid Player Plus software and comes with numerous excellent diagrams and photographs, as well as distribution maps and explanatory or descriptive (DELTA-generated) notes. As a guide to regional spider families and subfamilies, it is an important resource as the only up-to-date key now available
The CD) is presented in two parts. The first part is an enthusiastically idiosyncratic but informative introduction to spiders, the Australian fauna and taxonomy. It includes a checklist of Australian spiders (also available on the net via the (Queensland Musemm as a periodically updated resource) and an anatomical glossary:

The second part contains the kevs themselves. One can elect to directly enter the key to the Mygalomorphae or the Arancomorphae. However, if unsure about which of these to choose, a third option (rather confusingly titled "Australian Spider Subfamilies") provides a short key to five "groupings' including, oddly, the Hypochiloidea, which is not represented in the Australasian region. Using the keys is quite simple, especially after doing the tutorial provided.

The CD) would have benefited from further editing and testing to fix some typographical, factual and presentation glitches noted. Overall, though, this is a very useful resource for anyone working with or interested in Australian spiders.

Australian Museum

Magnie Alert: Learning to Live with a Wild Neighbour

By' Darry' Jomes. University of New South Wales Press, Sydne'), 2()()2, $1.57 \mathrm{pp} . \$ 29.9 .5 \mathrm{rpp}$.

WHAT A gREAT BCOOK! Because Australia has few places where Magpies are not found, most Australians have some sort of opinion about them. The book provides current information on mainly suburban Magpies, how and why they attack people, and how this can be managed. Although based around Brisbane, most of the findings should be relevant elsewhere as well. It is also about people and how their behaviour affects the Magpies.

There are seven chapters, ranging from background information to discussions of behaviours, and their causes and situations, of both Magpies and their victims. Often a question or hypothesis is posed and the reasons or evidence, for or against, follows. In fact, the book is a good practical example of the scientific method as well as a study on Magpies. The style is light and conversational and the details fascinating and varied. I confess to reading it from cover to cover like a novel. It is a great book for families, councils, wildlife authorities. naturalists, and anyone who has ever been swooped by a Magpie.
-Martyn Robinsor
Austiralian Museum

Gliders of Australia: A Natural History

By, David Lindemmager. Liniversity of New South Willes Press, Sydnep, 2()()2, 160 (pp. $\$.34 .9 .5 \mathrm{rrp}$.

THis Iatist amblion to the University of New South Wales Natural History series is a detailed, authoritative and highly readable work focusing on some of Australia's most attractive yet elusive mammals, the gliders. Gliding has evolved in three different groups (families) of possums, which range in size from the diminutive Feathertail Gilider (small enough to fit into the palm of your hand) to the (ireater (ilider (over a kilogram in weight). This book provides a fascinating account of some of the important aspects of the biology and conservation of the six Australian species.
Begimning with a discussion of the origins and evolution of gliding, Lindenmayer highlights somte of the special adaptations, including a gliding membrame, gripping pads on the feet, widely spaced eves (which assist in fudging distance) and the female's comparmented pouch that cushions young against the impact of the mothers landings. Subseguent chapters detail diets, habitat use, behaviour, life history and reproduction. The final chapter addresses conservation and management of gliders and the factors that have led to three species-the Mahogany (ilider. Yellow-bellied Gilider and Syuirrel Glider-being listed as endangered or volnerable.

Gliders of Australia draws heavily on the author's own extensive experience in the forests of eastern Australia, and is an extremely valuable addition to the library of natural-history enthusiasts, students and professionals alike.

SOGIETY PAGE

 dear．Whether your spectal interest is conse vatom，bidk，science，mational parks，bushwalking or a particulat group of ．mmalak，therei a society for youl

anlmal Welfart

WIRES

NSW Wildlife Information
\＆Rescue Service
P（）Box $2(0)$
FORESTVILLE NSW 2087
Ph：（12 8（977 ．3．3．3．3 \＆ $18(0) 6+1$
188

Contact：Carol Macl ）ougall

Membership：$\$+1.1111$

Wildlife Carers Network－ Central West Inc．

PO Box 787
MUI）CBEE NSW 2ヶラッ
Ph： 0408 リ）
Contact：Joan Hills

Membership：\＄20．0（1）

BIRDS

Birding NSW
PO BOX（Q277
QVB Post Shop
SYIDNEY NSW 12.31
Ph：1297121180

mstehirds
Contact：Barric

－■■	ENVIRONMENTAL
Membership：\＄．35．10）per Family	Gecko－Gold Coast
	\＆Hinterland
CONSERUATION	Environment Council
Tablelands Frog Club Inc．	Gecko House
Mail 13ag 71	1．39）Durangan Street
YUNGABURRRA（QI．j） 4872	（：URRUMIBIN（Q1．+22.3
Ph： 11740966.556	1） $1175.53+1+12$
Contact：Beryll avidson	Web：wnursetko．org．aln
■■吅■	Contact：Ben Perkins
Membership：$\$ 15.101$ Single	－ロローロロロ
\＄5．0）Conncession	Memberslup：from $\$ 16.50$

Tasmanian

Conservation Trust
102 Bathurst Street
HOBART TAS， 7000
Ph： 0362343552
Web：wivitat．org．an

Membership：$\$ 30.100$ Single \＄18．011 Concession \＄40．0n
（）rganisation \＄00．010 Corporate

EDUCATION

CSIRO＇s Double Helix
Science Club
P（）13ох 225
IICKSO）N A（：T 26（1）2
Ph： 0262766643
Web：wum：siro．du／lueli．
Contact：Jo－Anne MCRas

Membership：$\$ 27.111$ or $\$ 24.111$

The Royal Society
of Victoria
\times La Trobe Street
MEIIB（）URNE VI（｀．30）（）

Web：＂wnesciencevictorm．org．du

Membershup：$\$ 1+5$

ENOIRONMENTAL

Membershp：from $\$ 16.50$

Greening Australia

National Organisation

Membershp：Membership is
State／Ferritory coordimated． please contact your State／

Territory office for more details．

National Parks Association of NSW

Level リ．り1 York Street SYI）NEY NSW 200ハ1 Ph：（129299（0）
 Contact：Tara Cameron

Membership：$\$ 55.00$ Adult $\$ 65.101$ Househoht $\$ 30.010$ Concession

National Parks Association of QLD

1 （ $)$｜Box 11141
MILT（）N（：ENTIRE（QLI）
40） 04
Ph： 117.3 .367 （1878
Web：wimu：mpat．orgatil
Contact：Ieon Misteld

Membership：\＄45．00 Single $\$ 67.00$ Family $\$ 25.010$ Student

MUSEUMS

TAMS—The Australian
Museunt Society
6 College Street
SYIONIFY NSW 2 1110
Ph：0293206225

Contact Alisom Byme

Membershap：$\$ 88.00$ Fatoily
$\$ 70.06$ Single $\$ 52.10$ Concervion

The Waterhouse Club
SA Museum
North Ferrace
Al）EIAII）E SA 5（rm）
P1：（18 K20．3 リス（）～
Web：wave．materhousechuborg． （111／whe

Contact：Mary Lou Simpson

Membershup：$\$ 90.00$ Family \＄70．010 Single

MATURAL HISTORY

Dinosaur Club

Australian Museum Education
6 College Street
SYIDNEY NSW 2（1）（1）
Ph： 0293206223
Contact：Kate Cox

Membership：$\$ 15.00$

REPTILES \＆AMPHIBIANS

SA Herpetology Group
C：－SA Masemm．North Terrace
Al）ELAII）E SA 5（\％）！
Ph： $11+1980680($
Contact：G．avinklowe

Aembership：\＄28．0（1）Adult \＄24．00 Concesson \＄32．010 Fimily

[^2]
489

The Trouble with Puggle

Q: - What do you call a baty' echidna,
a baby platypus, or a baby
-Marciot Craid)oock Montrose, Vic

A:'Puggle' is a term that was first used to refer to echidna young by Peggy Rismiller, who studies the Short-beaked Echidna on Kangaroo Island. In fact, it's a term she used nearly 11 years ago in this magazine (Nature Aust. Spring 1993), two years after its debut in Australasian Science Magazine. In her 1999 book The echidna: Australia's enigma, she proposes that the term be used for baby monotremes in general (in other words, for the Platypus as well).

However. 'Puggle' is also the trademark name for a soft toy and series of children's books, registered by the Barber family, from Victoria, in 1979. The
toy bears an uncanny resemblance to a baby echidna. There has been some confusion about whether the proposed name for baby echidnas came from the toy: or whether it was independently derived. Either way, the facts are this: the Barber family was the first to use the name and, since then, it has been used to refer to baby echidnas.

And the Platypus? In 1998 Brisbane's

A baby Short-beaked Echidna (Tachyglossus aculeatus).

A:The photo shows a Whitecrowned Snake (Cacophis harriettae). It is an egg-laying member of the venomous family of snakes called the Elapidae. But unlike death adders, tiger snakes, tapans, black snakes and brown snakes, this species is not considered dangerous due to its small size and inoffensive behaviour. It grows to a total length of about $\overline{5} 0$ centimetres.

White-crowned Snakes occur in woodlands and forests along the east coast of Australia from the vicinity of Townsville to north-eastern New South Wales. They are nocturnal and hence susceptible to nocturnal predators such as Cats. They feed primarily on dayactive skinks, which they probably find sheltering beneath leaf litter
Like the other three members of its genus, this species has an interesting threat display. When confronted by an

White-crowned Snake (Cacophis harriettae).
intruder, the snake raises the front of its body vertically off the ground with the head at a right angle to the body and slowly sways. In dim light, the pale crown with its dark central area gives the appearance of a snake threatening with an open mouth. Unfortunately, this behaviour didn't work for your snake.
-Alien E. Grffr Austirailan Museum

Snake Charmer

Q:We foumd this dead smakee in our Ipswich frome yard one mornings (photo enclosed). It had bite marks on it that 1 assume were inflicted by' a Cat. The snake had white scales on its head, but the rest of the body was a beautiful shimy black. It was 46 centimetres long. What sort of smake is this, and is it poisonous?
-Charmaine Wenck IPswich (Q.I)

Gap Community Kindergarten wrote to the Australian Museum, proposing the name 'plateena' (based on a combination of "platypus', and 'pateenah'. Which is a Tasmanian Aboriginal name for egg). A note about it was written the following year in Australian Gor graphic (July-September 1999). In March 20003 the Sydne ' Morning Herald ran a story on the birth of Platypus awins at Taronga Zoo and referred to them generically as "puggles". As far as I know: though, "plateena is the only name that has been proposed specifically for a baby Platypus.
If you speak to monotreme workers, most prefer not to give special names to the young of echichas or the Platypus. Call them "nestlings" when they are in the nest, or "pouch young' when they are in the pouch, they say: One of the organisers of the Monotreme Symposimm, held in Sydney in July 20()3, went so far as to declare the meeting a "pug-gle-free zone"!
But language, like the Platypus and echidnas, is an evolving thing. And if the words 'puggle' and 'plateena' are
used often enough, they will eventually become absorbed into the lexicon. Indeed, the editors of the next (fourth) edtion of The Macimaric I) ictionary already have plans to include the word "puggle". Apparently they will cite the registered trademark of the soft toy as the derivation. As for its definitionwell, they haven't decided whether it will be the name for a babye echidna, or the name for baby monotremes in general. At this stage echidnas look set to win the label, but this may well change further down the track.

- CiH.

Answers to Quiz in
Nature Strips (page 20)

1. Cutuorms 2. Germani) 3. Spearthrowing device 4. Croote Eplandt 5. National Aeronautics and Space Administration 6. Two 7. Frilled Lizard 8. Burrowing Bettong
2. Bonobo 10. 1080 ('ten-cighty')

Pic Teaser
Do you recognise this? If you think you know what it is, then send your answer to Pic Teaser, Nature Australia Magazine. Please don't forget to include your name and address. The first correct entry will win a copy of Famous Australian birds. Spring's Pic Teaser was a toad bug (Nerthra sp.).

ROUGHING IT without toughing it!

with TASMANIAN WILDERNESS EXPERIENCES
Whether you're a beginner or a seasoned bushwalker, TWE offers a unique range of integrated services so you can experience the best of Tasmania's wilderness.
We offer a choice of practical solutions to make your bushwalk smoother: transport from Hobart to all National Parks; a range of comfortable accommodation; quality equipment for hire; and gourmet food for the track. Pick the service you require or take a fully guided tour that includes all these features. It's up to you:

Ring for a free brochure on 1300882293 or check out our website www.bctas.com.au for further information.
Let us do the legwork

Bring back the devil?

We predict that introduction of the Devil will suppress Tox immbers througsh compertition and diret predation

About +30 years ago, illi Tasmamian Devil became extinct on mainland Australia and can now only be found in the southermmost State. Conventional wisdom has it that the Dingo drove the Devil from the mainland, as well as its now fully deceased cousin the Thylacine. Equally plasible, though, is the idea that improsed Aboriginal technologies and population expansion at around the same time that Dingoes were introduced (4,000 years ago) led to increased predation on Thylacines and Devils. But whether Dingoes, or Aborigines leading traditional lifestyles. were responsible, neither are now present in most of south-castern Australia. European Australians got rid of them both. Consequently, there is a primu facie case for the reintroduction of Thylacines and Devils. Of course, this is impossible for the extinct Thylacine, but not so for the Devil.
Reintroduction, like extinction, can have unforeseen consequences and before proceeding we would need vigorous debate backed up by sound empirical analysis. The problem is that European Australians have forced a new equilibrium on the Australian fauna and for many species the balance is precarious. Adding a new player will affect this balance. conceivably sending other species into the abyss. However, in this case, we predict that the addition of another carnivore to the Australian mamland will reduce overall predation on endangered species, counterintuitive though this may seem.

Our argument is founded on the con-
cept of 'meso-predator' release. Removing the top predator from a system relaxes pressure on the next largest (the 'meso' or middle predator), allowing it to increase in abundance. Because the preferred prey of this predator never exactly fits the profile of the one that was removed, the affects on prey species will be asymmetrical. A classic example of meso-predator release is that of the Dingo and the Fox.
Removing the Dingo from much of Australia has benefited the Fox, and the overall envirommental impact may have been detrimental. The reasons are twofold. Although the Dingo's diet is flexible, it typically takes larger prey than the Fox. Thus, the two can coexist, but in addition to suppressing Fox numbers through competition. Dingoes are likely to kill Foses where they encounter them. A balance is struck. with Dingoes favouring larger pres, Foxes taking smaller fare. When Dingoes are taken out of the equation, pressure on larger prey, such as big kangaroos, is relased. However, predation on smaller species will soon increase as Fox numbers rise. In addition to increased top-down pressure through Fox predation, smaller species are squeezed bot-tom-up, as growing numbers of large kangaroos cat into their resource base. Semantic debate over whether the Dingo is "native" aside, its persecution may have done more harm than good, and further moves agrimst it should be considered in this broader context. Certainly, many ecologists see the Fox as feral enemy number one for Australia's native mammals.

But what happens if, instead removing the top predator, we add one? Enter the Devil. While the Devil is more dependent on carrion than the Fox, their miches overlap. We predict that introduction of the Devil will suppress Fox numbers through competition and also direct predation of Fox cubs in the den, thereby reducing the overall impact on Australia's most vulnerable species. The most important factor in determining the outcome of encounters between predatory mammals is size. 1) evils are twice the body mass of Foxes and vastly more powerful where it counts-the jaws. Our hypothesis is that the Devil will reduce Fox populations, but because Devils are less efficient predators, the total impact on small species will decline.
Are we sure that bringing back the Devil will help shift the balance in favour of our most vulnerable species? No. Reintroduction cannot proceed without robust experimental support. Devil-Fox interactions must first be examined within enclosed areas. Even then it might be argued that, because each community is unique, demonstrating that Devil reintroduction may be beneficial in one part of Australia is no guarantee it will not impact adversely in other regions. Whatever the outcome of such experiments, they will lead to deeper insight into the ecology of both Devils and Foxes. In light of the recent. potentially catastrophic introduction of the Fox to Tasmania, as well as the ongoing trauma inflicted by this depressingly adaptable pest to mainlund endemics, this is insight well worth having.

FURTHER READING

Johnsion, C.: \& Hioc, S. (in pmess). Cimese of extimetion of wertelvates durings the Holocent of musintand Anstralia: : urrival (y) the diligen, or Inuman intpact? The Holocene.

Dr Stiphen Wrobsa
PAIAEONTOMOGIST AT TIII UNVEERSITY of Syinney. Dr Chistopher JOHNSONIECTURIS IN TIRRRSTRIAL JOHNSON IECTURES IN IDRR COOR UNIERSITY.
HCOIOGAY JAMES COO

[^3]Save time
and money
hy having
Nature
Australia
delivered
to your
door!
In the
next issue...

- Black Surans
- Quokkas
- Northern Snake-
necked Tiurtles
- Zebras
- Homosexual
animals
- Origins of language

Autumn issue on sale March 2003

Toll-free Subscription Hotline: [1800] 028558

See reverse for details of back issues

NEW SUBSCRIBER
 PLEASE SEND A SUBSCRIPTION FOR

D years for $\$ 97.90$ (overscas $\$$ A 116 -suiface, $\$$ A 176-airmail) 02 years for $\mathbf{\$ 6 9 . 3 0}$ (overscas $\$ A 83$-surface, $\$ A 123$-airmail) 1 year for $\$ 36.30$ (overseas $\$ A 45$-sunface, $\$ A 65$-airmail) Prices are CSST inchisive where applicable Start this subscription with \qquad issue Name

Address

SIGNEI)
\square Tick if you require a CisT tax innoice.
to 'Australian Muscum' 'Nature clustrotio is a quarder. Make cheques payable issues released in March,
Naturelustralia to 12 weeks for Melivery, June. September and December Please allow up 1) ecember 2())4 PHONE THROUGH CREhdated). Prices valid to ON $\mathbb{Z}_{1800} 028558$. SUBSCRIBE CREDIT CARD ORDERS

GIFT SUBSCRIPTION

I WOULD LIKE TO SHARE MY FACINATION WITH NATURE WITH SOMEONE ELSE
 - Start this subscription with \qquad issue

To

Address

Suburb/Town	Postcode		
From			
Address			
Suburb/Town		Postcode	
Payment by] Visa	\square Mastercard DAmerican Express	My card number is $\square \square \square \square \square \square \square \square \mid \square \square \square \square I]$ Expiry Date

SI(iNEI) \qquad CARI)HOLDER'S NAME (Print)
\square Tick if you require a CSST tux invoice. Chequue or cart suthority has to accompany orider Make cheques pyyble

 December 20.4 PHONE THROUGH CREDIT CARD OR

SEND THIS CARD AND PAYMENT POSTAGE FREE TO:
back ISSuES
Australian Muscum
Reply Paid 66752
Darlinghurst NSW 2010
Australia

SEND THIS CARD AND PAYMENT POSTAGE FREE TO:

Australian Museum
Reply Paid 66752
Darlinghurst NSW 2010
Australia

SEND This card and payment postage free to:

Australian Museum
Renly Paid 66752
Darlinghurst NSW 2010
Australia

BACK ISSUES POSTERS/LIBRARY BOXES ORDER FORE

(2ty	Issue Suppl No	Price S
	THE EVOIUTION OF AUSIRAIIA (a $\$ 24.95$	
	TRACKS THROUGH SIME (a) 810.94	
	LIBRARY Bu)XIS a $\$ 14.24$ each	
	Total s	

Post to
 matcer acstanlia, acstanliaw mosenam

 OEPLY PAID 68752, DAILMOMOHST MSW 2010(or phone $1800(128.558$ coll-free or fax (129.32() 607.3)

Name
Address

\qquad
Shation

25/1

26/1

27/1

2117

25/4

26/8

$21 / 2$

27/9

26/1

26/9

21/3

21/10

PURCHASE

A BACK ISSUE OF NATURE AUSTRALIA FOR ONLY \$5.50

26/3

MARSUPIAL
囬 Killers

26/10

$21 / 4$

26/4

26/11

$21 / 5$
21/6

hOLDS TWELVE ISSUES OF THE MAGAZINE. FINISHED IN DURABLE, DARK GREEN PVC, IT WILL ENSURE YOUR COPIES REMAIN IN MINT CONDITION

B|B|C

YEARS OF WILDLIFE ON AIR

NOW ON DVD \& VIDEO

 Available at ABC Shops, ABC Gentres and Leadino Viteo Reailers.
[^0]: FURTHER READING References for the stories that have appeared in this edition of Nature Strips are available online: www.natureaustralia.net

[^1]: ()'Comucll, I. F: Hurkes, K., Lupo, K. D EEBlurton Jontes, N. (. . 20) 2) Male sthutegies and Plio-Plesistocene ardaconlogn)' J. Hum. Evol. 43: 831-872.

[^2]: Newsletter／Journal
 Monthly
 meeting，Bi－monthly meeting，
 Ill Annual meetıng／Conference
 Weekly meeting Quarterly
 meeting，Field outings／Tours，
 Conservation／Working programs，
 Discounted Goods；Magazine
 E Social／Education activties，
 Nature Australia magazıne
 Seminars

[^3]: TiE LAST Womo is an ofnion puct

 of thit Austrainan Musti

