feathered Dinosaurs

 Monie wimies Victorian Possums Makion facos Alorigiles a pane rouils
Hoyougs

8:1rsenic

BEAUTIFUL NATURE

Contrary to popular belief, death is not the end.

From the very moment our hearts stop beating and our lungs stop breathing, our bodies become a whole new kind of life-supporting ecosystem for a host of other creatures.

Bacteria, mites and flies all live, feed and breed on our remains, attracting other organisms including predatory beetles. They all contribute to the recycling of our bodies.

The presence of these insects even offers critical clues to forensic scientists when determining the time of death. To discover more about the fascinating biological, medical and cultural facts about death and beyond, visit death - the last taboo. Now showing at the Australian Museum.
We think you'll find it surprisingly interesting. After all, it's a fact of life.

SPRIN(; 20103 Volunte 27 Number 10
Published by the Australian Museun Trust 6 College Street.
Sidney, NSW 2010.
Phonc: (112) 9.320 (2010)
Fax: (12) 9.320) 6,17.3
Wel: Www.matureaustahan.net
Trase D'resident: Brian Sherman
Auseum 1)rector: Michad Archer
Publishung Manmer
JENNIFER SAUNDERS, B.SC.

E, ition
GEORGINA HICKEY, B.SC.
cman: geongich(ahgpond.com
Thowo Editor
KATE LOWE

1) esign \& Production

FORTY FOUR DEGREES NORTH

Adrentisms
KEN HILL/BUSINESS MAC (iAZINES
Phone: (17) 3.3ソ) 1ss.5
emanl: ken-hill(a bgigond.com
Subscriptions:
Phone: (12) 932066119
Toll-free (1800) (128.5.5
Fax: (12) 9.320)6017.3
email: subscribe(a, austmus.govau
Annual subicription (+ istucs)
Withom Australin \$A. 36.30 (Other countries $\$.4+5$
Two-vear ubberptoon (8 issues)
Within Australai \$A(0) 30 ()ther countries $\$$ A8. 3
Three-vear subscripton (I2 issues)
Withon Australail \$A97 90 (Other countries \$Allo ptice noclude CST where appticho

Proudly printed in Australia by Penfold Buscombe
New fubserptrons can be made by credtr card on the Vitturn flustrath toll-fre hothn (1801) (128 538 or use the form m the magazme It it has betn removed, send cheque. mones order or credit ard authorisiton to the addres above, made pable to the 'Austrahan Museum' in Australan currencs
4ll matheral appearnug in N.ture Austraha, t cepyright Reproduction in part or whok 1 mot permuts d nuthour nime in antlormathen from the Pithlshmए Hemetere
NAItRIGIESTR.BLIA weleomes artik les on the batural and cultural heringe of the Anstalastan Region Opmons expressed by the authors are thear own and do not necessarily repre ene the polictes or vects of the Austratian Musemen All artilles in N $1 / 7 \mathrm{RI}$ Il SIR MII. are peerrewewed
 witalle for libjan collestrops
Published 2003 ISSN-1324-2598

NAIURE AUSTRAIIA
is proud wimer of the 1987. '88. "89.
 20003 Whitley Awards for Best
Zoological Periodical, and the 1988
\& ' \because () Australan Hertuge Awards.

HR()NT COVER
The spectacular beauty of mature is captured in this photo of Peron's Trec Frog (Litoria peroul), Photo by Brent Wilson/Nature Focus.

|t's wonderful to be able to amonence that Nature Australio has just won the 200.3 Whitley Award for Best Zoological Periodical from the Royal Zoological Society of New South Wales

First presented in 1979. these awards recognise outstanding publications that contain significant amounts of information relating to the fama of the Australasian Region. Each year a committee consisting of both academics and non-academics reviews all the entries and recommends the assignment of awards in the various a ategories. For a publication to be successful in the Whitler Awards, it must either make a significant contribution of new information, or present a new synthesis of existing information. Evidence of excellence is sought manly in the text but illustrations are taken into consideration as well as standard of design. presentation and production. This sear marks our 11 th such award since 1987 and represents a recognition of our ongoing commitment to provide fou with the best mature magazine in Australia.

In this issue we have some great articles for you. David Lindenmaver and R oss Comminghan (along with more than $4.50(0)$ volunteers have spent the last 20 years collecting information on the possums and gliders that live in the Mountain Ash forests of Victoria. In their efforts to understand how so many species from the one broad group can coexist in the same forest they have discosered some important differences in the habitat recpuirements of each species. This information should prove invaluable in attempts to conserve these wonderfal amimals.
Steve Salisbury takes us on . 1 mindbending tour of the evolution of feathers and tries to unravel the research currently being undertaken to understand when, whe and how feathers evolved. Ken (ireen has been

A Feathertail Glider.

interested in Bogong Motlis for the last 25 years. He has discovered a disturbing link between arsenic and the moths, but what impact will this have on the many mimals that rels on Bogongs for food and where is the arsenic coming from? Gisela Kaplan believes that, when it comes to accurate mimics, the Australian Magpie camot be beaten. She presents her case, and explains why these birds do it, in her article on page (a). With the Cane Toad marching across the Top End, Jon Altman, Tony (iriffiths and Peter Whitehead focus on the issues facing the Indigenous land managers of the region as they try to solve a problem that non-Indigenous Australians seem to have put in the too-hard basket.

We also take a look at how poisonous plants have actually helped to protect many native anmals. discover a living fossil. follow the life of a Wollemi Pine be reating its rings. explore how homans communicate with their facial expressions, and present a case for removing shark nets from Sydney's beaches. Just in time for the wamer weather. Enjos:

Publishime Mamager

contents

ARTICLES

Playing Possum

How can so many different types of possums and gliders live together in the one forest?
BY DAVII LINIDENMAYER \& ROSS CUNNINCHAM

26

The Fuzzy Frontier

The flock of feathered dimosaurs is growing fast, as is our understanding of how feathers evolved.
IBY STEVE SALISBURY
34

Invasion of the Rubbish Frogs

Our failure to stop the advance of Cane Toads is now impacting on the way of life of Aborigines in the Top End.
BY JON ALTMAN, TONY (GRIFFITHS \& PETER
WHITEHEAD

Arsenic and Bogongs

Bogong Moths are ferrying arsemic mito the alps. Where does it come from, and how will it affect the rest of the alpine fama?
BY KEN (iREEN
52

Magnie Mimicry

Forget lyrebirds-when it comes to sound mimicry in birds, the Australian Magpie beats them all.
BY (IISELA KAPIAN

60

REGULAR FEATURES

Diamond Drill for Sore Gums
The Spotted I'ardalote's penchant for the amal secretions of sap-sucking bugs is a saviour for cucalypts.
BY STEVE VAN I)Y(KK
20

RARE \& ENIDAN(FFIREI)

Colonial Spider

Restricted to the entrances and arches of just four cave systems, the Colonial Spider is one of very few spiders that live communally.
BY (IRANT HOSE
22

1080 Plants

Many mative ammals in the south-west are immune to the toxic effects of loso or poison plants, and this may be why Foxes were slow to take off there. BY TIM IOW
24

PHentoart

Beautiful Nature

Spectacular colours from our natural world.
BY BRENT WILSON/ NATURE FOCUS
68

The Creature from the Deep Lagoon

The world's most fanous livine fossil. the coelacanth, discovered from
Africals East Coast, now has a livme cousin in Indonesia.
BY SIM(ON I). P()LLARI)
72

BEING: IIUMAN

Making Faces

Words are not necessary to express how we feel. Our faces say it all. BY RICHARI) FULLAGAR 74

IHE SECRET LIFE OF PIANTS

Stored in the Rings

The study of wood can tell you a lot about a tree.
BY TIM ENTWISLE
76

THE LAST W()RI)

Shark Nets in the Spotlight

Shark nets off Sudnev's beaches have served their purpose, but the time has come to remove them.
BY JOHN PAXTON
84

Ietters

Bufialo Bull

So，I avid Bowman wants us to embrace Water Buffiloes as Australian wildlife（Noture Aust．Autumn 2003）．He does so partly by exploiting our semee of shame about the treatment of Aborigines ． stressing the value that some of them now place on butfaloes．He enlists support from Banjo Patterson．He plays down the ecological destruction buffaloes cause （see，for example．
＂Pandanus：Then and Now＂．Nature Aust． Summer 1994－リツリ5）．He wrongly argues that Australia＇s feral butfaloes． which are domesticated stock gone wild，are equivalent to the endangered mative buffaloes of Asia．He makes the outrageous claim that Australia has a＂dute of care＂towards these destructive feral beasts．This is remarkable stuff coming
from a university biologist． Why does he do it？He begins his article by telling us he was＂exhalarated by some primeval force＂be didn＇t understand．I think I understand．It is the romance of the big amimal It is the same voice that wants Horses，Coats，Camels and deer trampling through our mational parks．Like Bowman．I like big amimals． But when I want to see them I save up and go to Africa，or Asia．He is right in salying we will never eradicate our feral buffaloes． But that is not a reason for celebrating them，for allowing cmotion to dictate conservation policy：
－Tim Low

Urban Currawongs

I think it is highly unlikely that the prevalence of European garden plants has caused the increase in

Sydney＇s currawong populations（Nature Aust． Winter 20（1）3）．Consider the following．Between 150 and 30 years ago，privet，lantama and blackberries flourished． as did introduced bird species．Few currawongs or other native birds were found in the suburbs．Then， about 30 years ago， patriotism appeared．Experts urged the planting of Australian matives Gardeners obliged by planting mainly herbrids or plants alien to the region． Since then there has been a spectacular increase in parrots，cockatoos． honeveaters and their predators，including currawongs．Some of these species have joined introduced species as pests．
I suspect that the reduction of urban pest populations，both mative and introduced，will only be achieved through the revegetation of large areas with local plants（that is． those endemice to the Sydney region）and the replacement of lawns with

Pied Currawong（Strepera graculina）are on the rise in urban areas．But why？
mative grasses．Councils． plant murseries and particularly maturalists should do everything possible to promote this． but then again it＇s so much easier to scapegeat a ＂simister－looking’ and umpopular bird than it is to effect changes in human behaviour．

> -I)avi Mc Connachie
> Sanctuary Point. Nsiw

Humans－One of a Kind

Tim Low contends that，in terms of altering the enviromment，humans are different from other ammals only in degree，not in kind （Nature fust．Autumn 200．3）．I disagree．First，in some cases the degree of difference is so great that to imply human
destructiveness is just part of a continumm in the
biological world is pedantic at best and disingenuous at worst．No herd of elephants would do in a month what the same number of cockies with dozers and chains will do before lunch．No group of beavers could ever make the Three（ $o r$ ges 1 ）am． Second，there are absolute differences．No other species destroys the place with fire：none unleashes herds of dependent amimals onto the landscape：none releases lethal novel molecules into the surrounds：and none attempts to kill every single individual of another species in order that it vanishes from the Earth．
Comseration is ultimately about politics，and I leave it to readers to figure out who benefits from the view that humans just modify the environment like any other spectes．
－Alane．Girerr
Austrailan Musium

Allen Greer sill)": "No other spectes destro)'s the place with fire". But our fires burn so fierect)' only) becanse flammable vegetation evelved. Charoul mived with myraceous pollen cim be dated back to. Miocerte times. Fire-tolerant encol)pts, sheddinge. flammable foliage and burk, were displacing rainforests alld she-ouks millions of fears before humbuns came along. Our fires merel)' extended a mathral process.
Many species hesides humans: Inve coolied novel lethal molecules, and there are other predators that ause extinctions. Crown of Thoms Stafish wreck coral landscapeses oll a comparable salle to moses lumman lamdsape destruction (and starfish plagues appear to pre-date human influertec). I deree with Greer that we are (almest) unique in herding other animals (except for amts that hered aphids)
I highlighted the conservation prohlems inlerent in demping that we are amimals; and the uencfits for conservation of deciding that we are I did mot saly and don't believe that 'Inimans just modify the convirominent like 'an)' other species'. We will keep ruining the werld muless we can develop new relationships with nuture. Grece thiuks 'III' "pprouch is mrong: but I think the greater danger lies in not cmbracing ne'w wols: of thinking.
-Tim Low

A Handful of Collectibles

I liked your story about collectors (: Nature Aust. Winter 20(0.3). My husband is a book collector so every room bar two in the house is overflowing with books, as are the two sheds. It could be worse. He also started collecting M 'n' N dispensers-really ugly and garish plastic things-but fortumately this has slowed. My now-grown-up son, as a
child, collected those roundish sawn bones from chump chops, which be kepe under the bed. And when I was a child, both my friend and I collected fluff. We used to prick it off our blankets at night and off our fuzzy wuzzy boleros.

> —Marciaret ()XEN. WA

I am a stamp collector. I started when I was a child and continued until my mid-twenties. Then things like study, marriage. mortgage and fatherhood intervened. I have now taken it up again but, instead of the preoccupation with the accumulation, I now collect with more specific objectives in mind. F`ve always collected from Australia, because it is my home, but I am also interested in Cemmany and other countries. It took me nearly 15 years before I could deal with the Third Reich. During that time. if I handled this material. I always felt the need to go and wash my hands. (Freud would have loved that!) Eventually, I told myself to stop being stupid and get on with it. Through my hobby, I have learnt so much about the countries whose stamps 1 collect. It has become an important part of my life, and I would be lost without it. -Frank Gerictivich (.omo, WA

I am a museum zoologist in Tasmania, specialising in the taxonomy of smails. For a collection at home I have over 30() snail ornamentsof no great value, just a collection of interest to me. It also provides my friends and relatives with an infallible item to buy me for birthay and Christmas
presents. Even a small smail ornament worth a couple of dollars will please me. I loved your article on collectors.
-brian I. Smitil
QUIEN VICIORIA MUSI UM.
TAS.
Most of the people I know have collected a variety of things, from ormamental to dowmight odd, and so I agree with the premise that "it is an essential human quality to collect things" My husband and I have a large collection of cigarette lighters, ashtrays. cigarette dispensers and boxes. We have collected them over a long period of time. I also have a small group of beautiful Chokin plates that are on display all the time. Our collections don't rule our lives, but they certainly enrich them.
-MariIYn Staiham,
TAS.
As a child I collected the usual-coms, erasers and sheets of stationary. My grandparents also started a collection for me of dolls from around the world, which I have added to since I started travelling. As an adult I collect eggs. My friends buy me eggs as souvenirs when they go overseas, and live now learnt a lot about their meanings in different cultures.
—Emma Euloh

Nature Australia requests letters
be limited to 200 words and
reserves the right to edit them for
sense. Please supply a daytime
phone number and tyne or print your name and address clearly.
The best letter in this issue will receive a cony ol Voyage to the end of the world. The winner this issue is Margaret Owen. Ruth Waterhouse produces an exclusive range of jewellery and sculpture in precious metals. With over 20 species represented she strives to give each animal study a depth, character and life of its own.

To receive the latest free Mail Order Catalogue phone or fax the Studio on: (03) $6229 \quad 2366$ Enall nut@uthwatehousecom or write to: PO Box 528 N Kingston Tasmania, Australia 7051

$$
\begin{aligned}
& \text { Pieces shown here are Sterling Silver } \\
& \text { and actual size }
\end{aligned}
$$

www.ruthwaterhouse.com

Spring

Compiled by Geordie Torr and Martyn Robinson

Crab Meet

If youre brave enough to
risk a mip on the ankle. now's the time to grab a torch and head down to the ocean. Prowl the shallows on a late-spring or early-stmmer night and you might just come across large numbers of Blue Swimmer Crabs (Portunus pelagicus) getting together to mate.

In Australia, Blue Swimmers are found all around the continent in a wide range of habitats including bays, estuaries and intertidal areas. Although theyre strong swimmers. they spend most of their time buried just below the sand. only: their eves, antennate and gill-chamber openings exposed, waiting to ambush prey: They sometimes eat poisonous
toadfish, which also come in to spawn in the shallows at this time. Mating takes place as soon as the female has moulted. Not wanting to miss his chance, a male grabs hold of a female prior to moulting and carries her around, clasped bencath him for four to ten days, waiting for her to slip into something more comfortable'

The outcome of this liaison is anything up to two million eggs, which take about 15 days to hatel. The baby crabs then go through a series of very uncrab-like larval stages, sometimes drifting as far as $8(0$ kilometres out to sea. By late spring theyre ready to settle and head back inshore. At this time you might see things that look like steel-blue peas zooming around in the shallows. These are larval crabs just prior to taking the more familiar crab form and settling down on the seatloor.

For more on Blue
Swimmers, visit www.seaex.com/fishphotos/crab,.htm

Sneaky Orchids

Everywhere you look at springtime, plants are advertising for help ferrying their genes to a suitable partner. Most use bright flowers or the offer of a reward such as nectar to catch the eye of a gobetween. but there's one group that relies on that
age-old advertising adage-sex sells.

Certain types of orchids attract male insects by pretending to be a female. Not only do they often resemble the insect in question-usually a bee or wasp-but many are hairy in all the right places and produce a scent very
imilar to the pheromones produced by the female lo some cases, the male insect tries to fly off with the fatie female. in others he will actually try to mate with it. (L.ast century a group of orchid researchers found wasp sperm in the flowers but were imtially too embarassed to publish their unseemly discovery:) Either wav. the result is the same-they get lumbered with a packet of pollen kinown is a pollinis.

Many orchad epectes spectalise on their own insect spectes. which reduces cross-pollimation. mot to mention even more confuned insects. In order to be ready as soon as they are the male wasp mature before the females Raring to go, they investigate anthing so long as it looks. smells and feels like a female. But no matter how good the disguise. an orchid is still not as grood as the real thing. which is why the plants time the maturation of their flowers to coincide with that of the male wasps. But even it most flowers aren't pollinated, all is not lost
A simgle succerstiol pollination can viehd millions of seed.
For more on sexually
deceptive orchich, visit
http://online.anu.edu.au/BoZo/ peakall-_group/Florian/

Fighters, not Lovers

This is the time of tear when you might see soncthing resembling the staff of Acscul.apius-the rod with two entwined makes that forms one of the official symbols of medicine.

The two snates will be males testing each other to) see which is the strongest, longest, or otherwise better individual. Once entwined, each smake tries to get his head above that of his rival and force the other's head down. Eventually one suate topples over once too often or cant keep up the twinings and admits defeat by slithering from the
socole.
Interestingly: this behaviour has only been observed in a limited number of species moluding black smakes (Psendechis spp.). copperheads (Austrelaps spr.) and some pythons. Although these combats are usually very civilised. some captive pythons bite their opponemes and gouge at them with the spur-like remmants of their hind legs.

Excellent sources of information on smake ecology and behaviour are Rick Shme's. Australian smakes: a natural histor)' (1991) and Allen Cireer The hiology' and cerolution of Australian smakes (19)8).

FROM THE COLLECTION

On 28 September 1969, something unusual fell from the sky onto farmland at Murchison, Victoria (near Shepparton). More than 100 kilograms of small rock fragments (the largest weighing just seven kilograms) showered over an area of about 13 square kilometres. Together these became known as the Murchison Meteorite.
It proved to be a very rare type of stony meteorite, called a carbonaceous chondrite, thought to originate from comets. But it was particularly interesting because some of the chemicals it was found to contain were very similar to amino acids, the building blocks of proteins and

DNA. Although later proven to be of non-biological origin, the mysterious chemicals generated so much interest that researchers from two major US museums came over and collected most of the meteorite. Luckily, several other institutions, including the Australian Museum, managed to secure many fragments.

One interesting feature of this meteorite that hasn't received as much attention is its distinctive odour, which resembles that of camphor or bitumen

You can read more about the Murchison Meteorite at
www.ast.cam.ac.uk/AAO/local/
www/jab/astrobiology/ murchison.html

Geordie Torr is a
freelance science writer and Martyn
Robinson is the
Australian Museum's resident Naturalist.

nature strips

C(OMPILEI) BY GEORGINA HICKEY

RICHAR1) FUILAGAR. Karina Holioen. Karen Mc(ihee, Rachfo
Sulifivan, Abbie: Tifomas. (ieorbine Torrr ani) Vanessa Wooods arre RE(iUIAR (ONNIRIBUIORS I() NATURE STRIPS

Buzz Off Big Ears

Having problems with the local elephant herd: Put away the elephant gun and bring on the bees.

African Savanna Elephants (Lowodonta africilla) consume on average 110 tomes of follage a vear. some of this unavoidatly coming from local farms. For mumbers to increase, elephants must be able to live in harmony with the local people. African Honey Bees (Apis mellifera scutellata). which are notorionsly aggressive espectally near their hives. could be the secret to keeping elephants away from the trees and crops of local famers. and provide extra
income through sales in honey.
Fritz Vollrath (O.)atord University) and lain
Doughas-Hamilton (Save the Elephants) hung six occupied and 30 unoccupied hives on fever trees (Acation xamthophloca) at a favourite clephant foraging spot.
Elephants damaged over 90 per cent of the trees without hives, while none of those trees that had "live" hives were touched. Even empety hives provided some protection.
Elephants have an
excellent sense of smell and the smell of a hive may deter them from feeding in the vicintey. However, they also
have great hearing, and a long memory: The researchers played back angry bee humming to wild elephants and got mixed reateons. While some elephants ignored the sound. many others. moluding a t.me elephant that had been stung four years carlier. were visibly startled and backed away: Perhaps being stung be a swarm of African Honey Bees is not something an elephant is likely to forget.

-V.W.

If the Shoe Fits . .

at men are obsessed with the size of the ir penis. No doubt this stems

Bees may be just the ticket to stem some of the damage caused by African Savanna Elephants.
from the view that a longer penis signifies increased masculinity: Yet distinguishing phallic fact from fantasy can be hard when the subject matter is so sensitive.

Take foot size, for example. Many people saly you can tell the size of a man's penis from the size of his feet. Urologists Inoti Shah (St Mary's Hospital) and Nim Christopher (University College Hospital) set out to test this "myth" by measuring the stretched penises of IO4 patients, while taking note of their shoe size and age. Measured immediately atter disrobing (to minimise any effects of temperature). stretched penis lengeth has been shown to be a valid estimate of erect length.
The men, aged between 17 and s t. had penis lengths ranging from (o-18 centimetres (median 1.3 centimetres) and UK shoe sizes $5.5-1.3$ (median 9). but the researchers could find no statistically significant correlation between the two sets of measurements. In other words. large feet don't indicate a large penis, and vice versa.

These results support the findingss of Washington-based Richard "Dichic" Edwards. For the past eight years he has conducted an online penis-size survey: in which $3.1(0)$ men measured their own erect penises and provided various other measurements, including foot size. However, just as anglers are known to exaggerate the size of the fish they catch. males tend to up the length of their penis when selfreporting, so the results were somewhat suspect. (Edwards is now conducting another surver in which he is offering to do the measuring himself.)
-(i.H.

IOHN SHAW/AUSCAPE

Does Hunting Control Foxes?

When arguing the case for their sport, Fox-hunters often say that hunting Foxes helps keep Fox numbers down. Unlike their compatriots in Australia, Foxes (Vulpes vulpes) in the UK don't cause economic damage and loss of biodiversity, but could do if their numbers were to increase significantly.

Philip Baker and colleagues from the University of Bristol took advantage of the 2001 outbreak of foot-and-mouth disease to test this claim. Fox-hunting was bamed for ten months during the outbreak and restricted for a further two months, providing the perfect opportunity to investigate the real impact of hunting on Fox numbers.

The researchers had already surveyed 160 square-kilometre sites in 1999 and 2000 (before foot-and-mouth), estimating Fox numbers by counting faeces. They then surveyed these same sites again in 2()$) 2$ (after foot-and-mouth), enabling them to compare Fox numbers before and after the year's ban on hunting. Overall, they found no significant change in Fox numbers during the ban. If anything, there was a slight decline in Fox numbers in most sites, although the reasons are not clear.

The authors say their results support the Committee of Inquiry into Hunting with Dogs, that banning hunting is unlikely to increase Fox numbers. Foxhunters might have to come up with a better reason to justify their sport.
-A.T.

The Fall of Darwin's Finches?

The finches of the (ialapagos Islands became evolutionary icons as a result of (Charles Darwins 19thcontury observations. This group of 1.3 species
descended directly from just
one ancestral species and remains among the most celebrated examples of natural selection at work.

Now these legendary little birds could be facing their biggest evolutionar? challenge yet-bloodsucking maggots.

The larvate of introduced thes were first discovered infesting hatchlings in Galapagos finch nests by ornithologists Birgit Fessl and Sabine Tebbich, from Viema's Komrad Lorenz Institute, in 1997. Theyve since identified three species

A Small Ground Finch (Geospiza fuliginosa) picks ticks from a Land Iguana (Conolophus subcristatus). Will these Galapagos Island finches be able to survive the onslaught of blood-sucking maggots?
infecting the birds, the most common of which is
Philornis dounisi.
Although larval Philornis dou'usi survive on fresh blood, adults feed on fruit which is how they may have accidentally been introduced to the Galapagos. But whichever way they arrived, the issue is now whether Darwin's finches can survive the alien blood-suckers.

Such parasites can literally sap the life from their hosts by causing anaema. Fessl and Tebbich also found maggots burrowed into the flesh and organs of finch nestlings. Normally; hosts would eventually evolve defences. But Darwin's finches have not yet had time to adapt and it's believed maggot infestations
may already be killing more than a quarter of nestlings on some islands.

The researchers documented that Philornis dournsi alone infected an emormons 97 per cent of finch nests on the island of Santa Cruz and were present on all the archipelago's inhabited islands including Isabela. This is home to the rarest of Darwin's finches, the critically endangered Mangrove Finch (Catospiza heliobates). Parasitic fly larvae could propel the species towards extinction.
-K.Mch.

Dare You to Eat Me!

Next time you think you've found aphids munching on a plant in tour garden, take a closer look. It
could be the plant has fooled you.
Some plants actively imitate insects in order to attract them, such as certain orchids that mimic female bees so that the males are encouraged to visit, and pollimate, the plants. But now Simeha Lev-Yadun and Moshe Inbar (University of Haifa-(Oranim in lsacel) argue it can work both ways. Some plants, they saly, mimic insects to keep them at bay:

The stems, branches and leafitalks of the burr plant . Cunthinm trumarinm are covered in dots that look remarkably like an infestation of ants. Similarly, the dark-coloured anthers of
The stem of Xanthium trumarium. Would you eat a plant that looked like it was swarming with ants?

Pospalum grass dangle from green flowers, looking all the world like a cluster of aphids. And the immature seed poods of three wild legume species (Pisim! fulvinn, Lathyrus ochures and Vïta peregrina) resemble big fat caterpillars.
What purpose could this mimicry serve? The authors argue these adaptations protect plants from plantcating predators. While ants are well known for their aggressive and protective traits, another study showed that the rooot fly Delia madicum was less likely to lay its egrgs on plants with aphid infestations (why risk laying eggs on a plant that looks like it may already be eaten by the time the larvae emerge?).

And what about looking like a caterpillar? Each of the three different legumes had

immature pods dotted with conspicuous red spots. This spot pattern is typical of moth and buttertly caterpillars and warns that the grubs may be poisonous. The plants comningly cash in on this strategy, putting potential predators off grazing on their pods.
-A.T.

Wrapped with Love

Ihe most important thing about a gift is the wrapping, or so recent research on hunting spiders shows.

As a courtship gift, the male Pisama mirabilis will wap his prey in silk. transforming it into a white round parcel. When he

A female hunting spider (Pisaura mirabilis) clutches her egg sac (and sometimes anything that looks like an egg sac).
meets a female, he presents this gift to her and, if she accepts it, he starts mating with her almost immediately.
Pia Stallhandske from Göteborg University in Sweden were curions about why the spider first wraps his prey in silk. Could it be so that it resembles the female's egg sac? To find out, she used watercolours to paint the silk-wrapped pres brown, or extra white, while leaving others as they were (naturally white). She found that the gifts painted white, which had the same brightness as egg sals, were the ones the females grabbed most quickly:
The female has a very strong instinct to care for her

Ecotours and Walking in Victoria's High Countr!

Escape from the pressures of modern urban life and experience the serenity of the High Country.
Relax, breathe in the clear moutain air, take time to smell the fragrant bush scents and touch the smooth trunks of sculptured snowgums.

Wander along lush fern-lined tracks beneath forests of old growth eucalypts or across Alpine meadows to gaze over a sea of mountains. The memories will last a lifetime.
On selected departures join naturalist guides researching and monitoring populations of rare and threatened wildlife.

All ecotours and walks are graded from Very Easy to
Challenging and you can choose to either camp or stay in cosy High Country accomodation.
For full details of the current program contact Jemy:

(iippsland High Country Tours
 P() Bon 69, Bruthen Vic. 3885

Phone (0)3) $5157555($ Fax (0)3) 51.575 .539
Email: jennyghcı@netspace.net.au
Est. 1987. Accredited Member VT()A
Advanced Ecotourism Accreditation (NEAP)

Money is the root of all good. For all money is blamed for, it can

 also be a powerful force in making a positive change. | By putting your money with Australian Ethical Investment, you are investing in portfolios dedicated to benefit society and the environment. | They're also the longest established ethical fund manager in Australia. | Where is your money going? | PHONE 1800021227 FOR INFORMATION OR VISIT WWW.AUSTEETHICAL.COM.AU Applications for investment can only be made on the form contained in the current prospectus or superannuation offer document which is available from Australian Ethical Investment L.td. Past performance may not be indicative of future returns.Australian Ethical Investment \& Superannuation

Humans have only been throwing things around for 19,000 years.

Thrust, not Thrown

Humans are good at throwing. Take a look at the Gumess world records: a haggis was hurled 55 metres; 98 metres for javelin gets an Olympic gold; and with the add of an athatl (or spear-throwing device that fits onto the end of a spear) the record is over 258 metres. When did humans start chucking things, and why?

The earliest (400,000 -year-old) spears, from Schöningen in Germany, were initially thought to be thrown because of their aerodynamic design.
Moreover, spear throwing was inferred from the high degree of asymmetry seen between the left and right upper limb bones of Neanderthals and early modern humans found around this time. This asymmetry was assumed to have been produced from the uneven forces experienced through onehanded throwing, with the dominant (right) arm becoming stronger and more robust than the left. However, as Daniel Schmitt and colleagues () uke University) argue, two-handed thrusting could also have produced this rightdominant pattern.

To test this idea, the researchers set up an experimental design to measure forces acting on an aluminium spear thrust using two hands into a gymmastics cushion. They discovered that the force imparted to the main (rear) thrusting arm can be 6.6 times that acting on the leading (guiding) arm. This would result in corresponding differences in strength and bone morphology in the two arms.

The researchers also noted that the upper arm bones of Neanderthals and early modern humans were oval in cross-section, while those of modern humans less than about $19,0(0)$ years old were circular. A shiff from thrusting to throwing might explain this situation, as the forces applied along the bone during throwing are evenly distributed, as opposed to those applied during stabbing, which are not.

These findings suggest that big-game hunting with thrown spears only became an important honting tactic in the last $19,(0) 0$ years, which also happens to be when the first atlatls appear in the archaeological record.
-R.F.
egg sac, which would get caten if left unattended. She clings tenaciously to it for up to three weeks when her spiderlings hatch. If the egg sac is experimentally removed, the female searches trantically for it. Stalhandske believes the males are exploiting the female's maternal instinct to clutch at an eges sac.
()ccasionally a male will silk-wrap small flowers or a useless exoskeleton. But as long as it looks good, the female will accept it, proving that it's not the present that counts, but the wrapping.

> -V. W.

Through Ancient Eyes

could dinosaturs see in the dark? With the last of these ancient reptiles having died out some 6.5 million years ago, this will surely remain a rhetorical question. But perhaps not.

A team led by Belinda Chang (Yale University) has managed to "recreate one of the visual pigments of a 2+(1)-million-year-old archosatur, a member of the group of reptiles that gave rise to the dinosalurs. The pigment, called rhodopsin, plays a vital role in vision at low light levels.

The scientists first step was to reconstruct an evolutionary tree, linking the ancestral reptiles to a variety of other vertebrates including allig.ators. pigeons, toads, goldfish and eels. Placing each animal's rhodopsin gene sequence on the tree they then worked back to calculate what the archosatrs seguence would have looked like.

Once they had what they thought was the most accurate version, they set

Although fully female now, as a youngster this Fossa would have masqueraded as a male
about reconstructing it. suthesising large fiagments of I)NA, amplifying them moto numerous copies, and then sticking them together in the right order. The resulting gene was then inserted into a culture of monkey cells, which heg.an manufacturing the ancient archosaur thodopsin.
When they analysed the pigment's properties, the researchers found that it was most semstave to light towards the red end of the spectrum. In this respect it is similar to that of a modern bird, which is probably not surprising given that birds are the direct descendants of dinosalurs. However, the results also suggested that the archosaur's night vision

was at least is good as a modern-day mammals giving rise to the intriguing notion that they: and hence the dinosaurs, were nocturnal.

Butch Fossa

1ost adolescents go through a difficult period, but life for a young female Fossal must be particularly confusing. The Fossa (Corptoprocta
ferox) is a large predator related to civets found only on the island of Maddagascar Early last century, it was noticed that some female Fossas possessed male-like features, including an

Best for Birding Australia's premier birding retailer

 Birding

 Birding Shop

 Shop}

Binoculars
Field Guides GPS Units EPIRBs Giftware

Clothing Tapes \& CDs

Tripods Maps
Prints

Birds Australia Threatened Bird Network
The Birding Shop is a The Birding Shop is a proud firiancial supporter proud sponsor of the of Birds Australia Threatened Bird Network

e stock many books reviewed by Nature Australia try us first and mention this ad when ordering to receive a free gift

Visit the AqUILA IMACES photo site
www.thebirdingshop.com/aquilaimages.htm

415 Riversdale Rd Hawthorn East, VIC 3123 Tel: (03) 98135488 Fax:(03) 98131744 sales@thebirdingshop.com www.thebirdingshop.com

Natural History Books Spotting Scopes On-line Image Shop Australia-wide Delivery
enlarged spiny clitoris that resembled a penis. This socalled masculimisation is seen in a number of other mammals including Spotted Hyenas (Crocuta coocuta).

A team led by Clare Hawkins (University of Aberdeen, UK) travelled to the worlds fourth largest island to investigate the nature of these gender benders. The eight juvenile females they caught did indeed have a number of masculine features, but strangely (and uniguely among mammals) these features were transient. being most noticeable in Fossas between one and two cears of age

Masculimisation in other animals has been put down to either a need to be more
aggressive-achieved through increased levels of testosterone, which in turn cause the development of masculine features-or social reasons, with male-like gentalia being important for determining status in a group and allowing females to control which males mate with them.
But female Fossas aren't particularly aggressive and dont have increased levels of testosterone. Females are also typically solitary, so masculinisation wouldn't offer ans direct social benefits.

The researchers believe that it's this desire to be left alone that has led to the development of masculine features. Because females are solitary and only have a brief
period when they are sexually receptive, males may attempt to mate with any female they encounter Resembling a male could stop the young females being harassed by suitors. which can lead to injury: Masculinisation also concides with the time when young female Fossas are dispersing, so looking like a male may stop them from being attacked by territorial females.
-G.T.

The Big Die Young

0ne of the downsides of heing male is that you tend to die younger. Perhaps this is because males take more risks than females as they slog it out with one another to take control of a

A mating pair of Southern Elephant Seals (Mirounga leonina). Being big is good, but it has its downside
territory or mate. However, new research by Sarah Moore and Kemeth Wilson (Unisersity of Stirling, UK) has found that most males are also more susceptible than females to parasites, and this may be hastening their demise.
Moore and Wilson compared the parasitic infection rates, relative sizes and life spans of low, mammal species and found that the larger the male is relative to the female, the more parasites he has. When they looked at the relatively few species where the female is larger than the male, they found the same thing happening in reverse: the girls have more parasites than the boys. This would appear to rule out the idea that higher levels of testosterone in males-thought to lower immunity-is responsible for increased mortality:

So perhaps there's nothing special about blokes: it's just that males tend to be bigger and eat more, and so offer a larger target to parasites. -A.T.

Roses Are Red, Violets Are...?

In some parts of the world, the sky isn't blue. That is to say, the people who live there don't call it blue, and may not even perceive it as being blue.

Many langunges don't split the visible spectrum up in the some way that English does. In some, there is no distinction between green and blue, and in others no distinction between blue and dark. More than a century of study has farled to produce an adequate explanation for this peculiar state of affairs, but now Delwin Lindsey and Angela Brown (O)hio State University) thank they may

Tropical paradox? People who are surrounded in blue can end up being blind to it.
have found the answer.
After reviewing 20.3 languages, the researchers found that those people who lacked a tem for blue tended to come from regions where the level of UV in sumlight was hightypically areas close to the equator. Speakers of these languages also tended to have a higher prevalence of blue-vellow colour deficiency: Lindsey and Brown suggest that both of these effects are the result of damage to the eve caused by UV light.
As we age, vellow pigments build up in the lenses of our eves, causing the demsty of the lems to increase and light at the blae end of the spectrum to be absorbed. Exposure to UVB accelerates this process. The researchers asked young English-
speaking volunteers to name a variety of colours as viewed through clear and yellowed lenses of varving densities. They found that as older, UVB-damaged lenses were simulated, the subjects were less likely to use blue to describe a colour and more likely to use green.
-C.T

Killers from the Deep

5very winter, one of the world's largest ammal aggregations forms in Norway: Packed tightly together in dense lavers in the deep, dark foords. schools of herring (Clupea harengus) contain up to 40 billion individuals. Ten million tomes of fish is hard to overlook if you are a hungry Killer Whale (Orcinus arca). But the challenge for daylight-

hunting whales lies in bringing these great balls of fish to the surface for easy pickings.

Leif Nottestad (Institute of Marine Rescarch in Norway) and colleagues observed deep-water hunting on four occasions. By monitoring the school size of herring using sonar. and tracking the whales and herring with an

Large groups of Killer Whales work together to raise enormous schools of herring to the surface.
echosounder, the scientists were able to piece together the attacks.
Between 22 and to killer Whales gather together at the surface before diving $160-180$ metres through the dence laver of herring. Throughout the hunt the whales vocalise to one

another, coordinating their actions as a group. The whales drive enomons groups of herring upwards, herding over 25 tomes (75.000) individuals) to the surface. Once they are in shallower waters, the whales steer the herring into evertighter balls by tlashing their
white bellies, and kill and stun them using tail slaps. Then it's simply a matter of gorging repeatedly.
-K.H.

Say it with Leaves

D lants have been using
flomal fragrances to attract insect pollinators for millions
of years. According to recent research, however, it's not only flowers that can produce these scents.
Mathilde I)ufaÿ and
colleagues, from the (NRS. in France, made the discovery while studying the European Dwarf Palm (C.hamucrops lummilis), a

It's the leaves, not the flowers, of the European Dwarf Palm that bring on the pollinators.

Mediterranean coastal native pollinated by just one insect species-the weevil Derchomus chamacropsis.

The researchers found that, although the palan comits a strong fragrance when advertising for pollinators, it doesn't actually come from the plant's flowers. Most is produced by unusual and previously undescribed leaf structures, which appear, so far. to be unique among flowering plants.

The palmis flowers do produce a weak odour but the weevils are not interested in this. They are instead drawn from relatively long distances to the leaf

fragrance

Chemical investigations found that the feeble scent produced by the flowers contams none of the compounds normally characteristic of flomal aromas. In contrast, the perfume produced by the leaves contams mamly monoterpenes and sesquiterpenes, compounds that are common in the floral scents of other plants. Although the discovery explams how the palm attracts pollimators, the cues it then uses to steer the weevils from its leaves to its flowers where they are needed remain unexplaned Why the palm developed this unusual system man be due, the researehers believe. to the discrete placement of the flowers. These are enclosed tightly wath bracts at the base of the leat stalks and are often hadden by older leaves. It's possible the aroma-producing leat organs evolved because the
palm's leaves were in a better position to broadeast scent.

Frog Hollows

Aanyone whos spent a bight in the jungle can tell you, it's a noisy place Now sclentists have discovered that one small Bornean fiog has developed a novel approach to making itself heard: by exploiting the acoustics of its water-filled hollow.

Male Bornean Tree-hole Frogs (Metaphor)thella sumdama) live in partially filled tree tronk cavities, which act as both egrg deposition site and sound stage for their marous broadcasts. ()ne mght imagme that smging in a hole should dampen the call, but Björn Lardner (Field Museum of Natural Historv, Chicago) and Maklarin bin Lakim (Saboh l'arks.

Malavsia) noticed that the calls of the two-centimetrelong fiongs could be heard up to 50 metres away in dense forest

Intrigued, they placed a calling male in a part-filled plastic tube and analysed the pitch of the frog's call as the water level was slowly reduced. Initially the frog changed pitch erratically until it hit the note that matched the resomant properties of the contamer and amplified the call. Ciradually over the next several minutes, the frog lowered its pitch by 115 Hertz, to keep in tunce with the falling water levels Eventually it lost track, and started singing erratically in search of the acoustic sweet spot again.

Although several species of crickets and burrowing frogs are known to use their

The Bornean Tree-hole Frog broadcasts its call from its hollow.

Library Box

NHTLRE AUSIRALIA'S attractive library box holds 12 issues of the magazine. Finished indurable dark green PVC. with gold lettering on the spine it will ensure your coples of Nature
 Australia remain in mint condition.

Library boxes are avalable at \$14.24 each, including postage and handling. Use the form in the back of this issue to order your library boxes

BIRDWATCHING \& WILDLIFE TOURS WESTERN AUSTRALIA

Informative tours with naturalist \& professional ornithologist (ieorge Swam - who knows this region, its tlora and wildlife - one of the Kimberley`s most experienced wildlife guides

4WI) Safaris - Camping or fully Accommodated Tailored Itineraries - Kimberley Cruises Bushwalking - Fly/drive tours.

KIMBERLEY COASI WILILIFE EXPEDITION CRUISE

Cruise along the remote Kimberley Coast from Wyndham - Broome Specialist Guides on board - March 2()()4 - The Cruise of a Lifetime

KIMBERIEE ISI AND \& INLEI CRUISE
A superb birding cruise visiting Lacepede Is, Adele Is, Walcott Inlet and Sale River - Spectialist guides ()et 20)()4

PILS MANY MORE: EXCIIIN(; IOOLRS for 200) 3 and 2004

For brochure contact (icorge Swann PO Box 22(). Broome W'estern Australia 6725 Telfax (0X) 9192 12t6
Email kimbird(u,tpg.com.au
burrows to amplify calls, the researchers say this is the first evidence of an amimal not only sampling resonance properties, but also adaptively adjusting its call pitch to suit the ambient conditions
-R.S.

Giant Sperm Wars

(Several vears ago, the longest sperm known to science was discovered and it belonged to one of the smallest amimals, the vinegar fly Drosophila bifurca. It was nearly six centimetres long. about 20 times the male's body length. Not all vinegar tlies have long sperm. however; some spectes produce lots of shome sperm (rather than few long). But what is the driving force

The longest sperm

known to science was discopered

 and it belonged to one of the smallest animals.behind the evolution of few long or many short sperm? Female choice, say Syacuse Universits's Gary Miller and Scott Pitnick
Just as males vary in sperm length, so too do females vary in the size of their sperm-storage organs. In a series of experiments using the closely related vinegar fly Drosophila melanowaster. successive generations of females with either long or short storage organs were each mated several times
with males with either long or short sperm, and the paternity of their progens identified. (Sperm length and storage-organ length in these propulations had been manipulated using laboratory-breeding techmigues.)
Miller and Pitnick formad that the sperm of all males competed equally inside females with short spermstorage organs, but the larger the female's storage organ. the greater the advantage of
males with longer sperm.
According to the researchers, it is the length of the female's spermstomage organ that drives the evolution of spem length.
What drives the evolution of female sperm-storage length is unknown.

That female choice can rapidly drive sperm into outrageous tarbations of size and shape has significant implications for biodiversity. This is because sperm from one population can yuickly: become mismatched and reproductively incompatible with females of other populations.

-R.S.

It's the female vinegar fly
(Drosophila) that determines the size of the male's sperm.

Ancient hand-held weights or 'halteres': the real things and as depicted on Greco-Roman vases.

Performance-enhancing Slugs

Hand-held weights (halteres) were first used in the 18 th Olympic Cames of 7108 BC.. Greek vases clearly show athletes gripping slugs of stone and lead during the long jump. thrusting them forward at takeoff and back again before landing. But were these slugs introduced to enhance performance, or to increase the challenge of the event:

Alberto Minetti and Luca Ardigó (Manchester
Metropolitan University) argued theoretically that a weight-loaded jump would be longer than an unloaded jump if the takeoff speeds were the same. Thrusting the weights backwards before landing would also propel the jumper farther forward. But in a real-life situation, can takeoff speeds
be the same with the added weights: Surely the extra weight would reduce the speed:

Trials on four volunteers showed that lead slugs do indeed increase both takeoff speed and maximum vertical height, resulting in a greater leap forward for all long jumpers. However, mathematical models predict that there are no advantages when the halteres are heavier than ten kilograms. Allowing for extra muscle mass in the upper limbs and other effects, best performances were predicted with weights in the two-to-nine-kilogram range-just what the archateological record has uncovered.

No-one knows how the ancient ()lympians worked out that extra weights are performance enhancing. Following World Cup cricketer Shane Warne's
explanation for taking illegal diuretics. perhaps one of the Greck athlete's mums thought it would be a good idea.
-R.F.

QUICK QUIZ

1. What is the predominant colour of an (il)'sses Surallowtail Buttertl)?
2. Which famons four-legged animal was euthanised on Valentine's Day' 20(0)?
3. What does S.ARS stand for?
4. Which .Australian mammalogist wrote the Quarterl)' Essa) "Beautiful Lies" (20().3)?
5. What do plants called 'ornithocoprophiles' thrive on??
6. Where is the oul) knoum popmation of (silbert's

Potoroos?
7. What is another mame for the introduced Brown Rat?
8. Does a person weigh more on carpet or on hard floor?
9. What is the world's largest living pengenin?
10. How do archerfish obtain their prey?
(.Answers on page 8.3)

Diamond drill for sore gums

For all their fragile appearance Spotted Pardalotes: are surprisingly fearless.

WHEN IT COMES TO SERIOUS experimentation with meat, I flop spinelessly into the chicken and yellow-belly bag. Some exotic dishes, marimated and cremated, I can handle, and in this category I can conters to Camel, Donkey, Giant White-tailed Rat and lalan Cockatoos. But uncooked. the story is a different

Spotted Pardalote

Pardalotus punctatus
Classification
Family Pardalotidae. Smallest of 4-5 species.

Identification

Tiny, dumpy and 'finch-like'. Black head, wings and tail, all spotted white. White eyebrow, grey cheeks, fawn belly, chestnut-red rump, yellow under tail. Male with yellow throat, female's throat cream.

Distribution

Forests and woodlands of eastern and southern Aust. from Cairns to Adelaide. Also in Tas. and south-west corner of WA.

Biology

Eats insects (mostly lerps/ psyllids) and spiders. Breeds mid-winter to mid-summer. Lays 3-7 pearly white eggs, incubates for 14 days.
kettle of fish. ()ysters and sashimi cant even make it half way down the pitch without getting bowled out for a duck. And, generally speaking, any amimal secretions other than milk and honey are strictly verboten.
Some people with more intrepid taste buds. however. are able to enjoy the full spectrom of things secreted and

> Constant bullying lies at the root of why' Spotted Pardalotes mest in the relative safety of an underground tunnel.
discharged, from the bile of Asian Black Bears to the spittle-made nests of are swiftlets. Commoisseurs of these types of food are, however, not limited to the homan species. The diet of the tiny native Spotted Pardalote (Pardalotus punctatus) consists mostly of a chanky slurry of nests. But not bird nests, psyllid nests. I'syllids (pronounced "sillids') are small sap-sucking bugs. Some species are found only on encalypt leaves and live under crusty scales called lerps. Lerps, in turn, are dry: waxy: lentil-sized, cockle-shelled umbrellas buile from sugary secretions that ooze from a psyllid's anus. The psyllid momph hides under the frame of the

BY STEVE VAN DYCK

protective lerp and the two grow together as the bug sucks away at the leat under its feet.

As astonishing as it sounds for these plastic-looking lids, lerps are remarkably grood to eat, being composed of dextrin, amlose, amylopectin and complex polymers of glacose. Whenever I come across lempy leaves within reach, I pull off a spray and nibble on the wasy seguins. Most of the time the flavour evokes smouldering memories of commumion bread and church candles, but sometimes the image gets muddied when I recall what part of the pryillid produced the lerp.
Quite apart from keeping the stm, rain and most predators off a sucking psyllid's back, the lerp, as any gardener knows. keeps insecticide spays out as well. With this degree of protection, lerp-producing psyllids, when they occur in large numbers, can canse extensive defoliation and even death of trees. But relief for sore gums is in the air. Listen, and a persistent ticking of busy beaks up in the canopy will betray the presence of Spotted Pardalotes, lerp lovers on a break-and-enter mission mopping up the scales and the psyllid nymphe underneath.
A Spotted Pardalote, also once called Spotted Dimondbird, is one of the most miniscule and beautiful of Australian birds, being a plomp, nine-centimetre, nine-gram ball of yellows, reds, blacks and grevs, the top of which has been spangled in a shower of diamondlike spots. For a tiny bird, its beak is stout and powerful and, if you look carefilly at the upper mandible, there's a very sharp hawk-like 'tooth' that forms at the tip, presumably from all the lerp-prizing.

For all their fragile, moth-like appearance, Spotted Pardalotes are sumprisingly fearless and will approach homans to within an arm's length. I remember as a ten-year-old the first good look I ever had of one was when I simply grabbed a female that was hovering incuisitively in front of myace.

Unfortumately for Spotted Pardalotes, the value of lemps as a food resource has not escaped the attention of many other (larger) birds, mamely honeveaters, and more specitically that rubbernecked paragon of impudence and aggression,
the Noisy Miner (.Manorina melanocepha(r). Pardalote researcher and ecologist fohn Womarski (Northern Territory Department of Intrastructure, Planning and Enviromment) has calculated that between five and ten per cent of a Spotted Pardalote's day is wasted escaping from the attacks of bigger and more covetous lerp-lords like the Noisy Miner. He has suggested that this constant bullying lies at the root of why Spotted Pardalotes nest in the relative safety of an underground tumnel.
This burrow is drilled up to a metre into the side of a creek bank. compost heap or road cutting. And how well the tips of me fingers recall that cosy ball of shredded bark at the end of the tumel! Spotted Pardalotes are incredibly forgiving. As a young teenager I used to find their nesting holes down in the creck bank irresistible. By tumnelling in a few feet from the hole and at a different angle, you could converge in on the nesting chamber and with a torch watch the daily progress of the spotty family: A few clay plugs pushed into the observation tumel after each visit and the pardalotes never twigged to the intrusion.
But they don't always nest in the ground. Pairs have regularly and successfully used a hanging basket of fems under our pergola, and I have read of people having successfully encouraged Spotted Pardalotes to nest in dranage pipes hung horizontally under the caves.

During the nesting season from midwinter to summer, the male defends an area as large as four hectares around his and his partner's burrow. But after raising up to three broods, they put mining and parenting behind them and join large quiet flocks that can be seen fluttering in a slow dribbling procession from trectop to treetop. Nomally flocks number between 10 and 12 birds, but up to 1 , 0 oot individuals have been recorded in late-stmmer aggregations (interestingly, these are composed mostly of females and jureniles).

The flocks drift and wander, often over long distances (one individual was banded in Adelade then recorded nesting in Melbourne nine months later). They search for warm lowlands in winter, cool highlands in summer and, of

A male Spotted Pardalote brings nesting material to his burrow.
course, outhreaks of peyllids that are probably detected from the air by the drooping, brown canopy shown by suffering trees.
It could be said that a pardalote's life is divided between treating disease of the gums and drilling tumels among the roots. Smack of another profession: (No wonder they wear diamonds!) But no, these little gum doctors are really just humble gleaners. []

FURTHER READING

Higgins, P!]. \&ं Peter, I.M. leds), 2002.
Handloook of Australian. New
Zealand and Antarctic birds. Vol. 6 .
Pardalotes to shrike-thrushes. O.yord University' Press: Mellomme.

Dr Steve Van Dyck is Sinior
Curator of Vertebiraies at the
(Queenslani) Museum where lie has WORKEI) SINC: 1975.

Colonial Spider

Tha Colomial Spider is knoun from only' four populations atoss a small area of south-edstern New. South Males.

IN New South W'ales, over 750 plant and amimal species have been listed as threatemed. The threat-ened-spectes list includes many mammals, fishes, reptiles, frogs and birds, but only two species of invertebrates. It is a similar story mationally: Invertebrates such as insects. spiders and crustaceans are poorly represented on such lists. which is surprising given that they comprise the most diverse and abondant group of anmals on the planet. Their poor representation on threatenedspecies lists does not retlect the healthy status of invertebrate commmities in Australia, but merely our lack of knowledge about most species.

The Colomial Spider (Badumma socialis) is just one of over 2.000 spider species described in Australia. It is currently known from only four populations across a small area of south-eastern New South Wales in the Jenolan, Abercronbie. Wombeyan and Colong Caves region. where it inhabits limestone arches or cave entrances. In these few locations it is generally present in large numbers, but while the spider is not currently listed as threatened, it may be considered rare because of its very limited distribution and specialised habitat. Cave entrances and arches are biologically diverse habitats where cave and surface faunas mix. The entrance and arches provide spiders with protection from the extremes of weather and an

abundant supply of insect pres:

Unlike most spiders, which are solitary, the Colomial Spider lives in groups. It is one of only around 20 spiders worldwide that displays commmal or social trats. The degree of interaction
among individual Colonial Spiders remains unknown, but they take their name from their colonial or commmal web-building behaviour. The webs are untidy; woolly sheets of silk with fummel openings. The webs of individual spiders are built alongside each other so that they overlap and create a continuous sheet that may cover several square metres of the cave roof. The webs are a particularly prominent feature in the roofs of the (iand Arch at Jenolan Caves and the Abercrombie Arch at Abercrombie Caves, and ofien have a blue-green sheen that results from light reflecting off the many fine silk fibres that make up each web.

The Colomial Spider is closely related to the Black House Spider (Badumna insignis) that adorns window comers. door frames and eaves in houses throughout southern Australia. It is likely that the Colonial Spider diverged from its relatives and developed its commumal lifestyle to make efficient use of the spectialised hobbitat. Colomial and Black House Spiders belong to a group known as cribellate spiders, which is in reference to the silk used in their webs. Cribellate silk is made from many matted microscopic silk fibrils. Wehs made of cribellate silk function without sticky glae and rely on the dense woolly network of silk fibres and other poorly understood properties (such as electrostatic charge effects) to entangle prey.

Just as spider webs catch arborne pres, they are also efficient in capturing arthome particles of dust and pollutants. Because spiders groom themselves regularly by drawing their legs through their mouthparts and also eat their silk weh-

by GRANT HOSE

1080 plants

$108(1)$ platis may ha'e sured man) marsupials from doome.

CON(QUEST OF THE WORLIS BY Home sapiens has been impeded in many regions of the globe by other species, notably those that ham people their crops and livestock. In a striking eximple from the loth century: expansion of the English into Western Australia was stymied by poisonous plants. When settless led their herds and flocks into woodlands east of Perth. their stock often died. The mystery fatalities proved a worse blight than
droughts, fires, floods and the spears of affronted Aborigines. In Isto amateur botanist James Drummond showed that the deaths were due to certain peabushes (Comstoblobimm species). These plants were later found to contain one of the most toxic substances known. compound loso (pronominced ten eighty') or sodium monofluoroacetate. the active ingredient in Dingo, Fox and Rabbit baits. These losu or poison plants had to be uprooted from pastures

Sandplain Poison is the plant to which Numbats in Dryandra Woodland may owe their survival. It grows there prolifically but otherwise is not a widespread plant.
before settlement could proceed.
The Western Australian wheat belt. over-cleared and blighted by salimity: today, is acknowledged as a dire example of over-development. Undoubtedly: many unique plants were bulldozed into oblivion before they were discovered and named. But the situation would be even worse today were it not for loso plants. Some of the major nature reserves survised only because they were toon rugged for wheat and rendered unsate for grazing by the poison plants.
foso plants may also have saved many marsupials from doom. Australia has the world's worst record of mammal extinctions and, although we don't know the exact reasons why. Foxes no doulte played a key role. Extinctions were most dramatic in the south-eastern thind of mainland Australia where Foves reached peak numbers. lowest in Tasmania where Foxes did not establish, and low in northern Australia where Foxes reman sparse.

The conquest of south-western Australia by Foxes. like conquest by the English, was evidently slowed down by poison plants. Many native ammals in the south-west have evolved a hightolerance for l(180) by feeding upon these plants. As legumes with mitrogen-fixing roots, the poison plants are highly nutritious. Western Grey Kangaroos (Macopus fultiginesus) rely on them for up to a yuarter of their diet. Toxicity trials have shown that Common Brashtail I'osiums (Trichosumes valpectula) in the south-west can endure 1.50 times as much fluoroacetate as Common Brushtails from the east. 1080 tolerance is widespread among mammals, birds and reptiles in the south-west. Predators such as Rosenberg's Monitors (Iaramus msenber(i) presumably evolved immunity by feeding on insects and other prey that browse these plants. Ingested flumoroetate may take a day or two to be climmated, which means that a Fox or Cat dining on possum in south-western Australian runs a risk of being poisoned (or if the dose is low, a camivore's fertility may suffer). Biologist believe this
toxic effect has suppressed Fox numbers in south-western Australia, which helps explain why Numbats (Myrmecolius forsciatus), Red-tailed Phascogales (IMascogale calura), Brush-tailed Bettongs (Bettongia penicillata) and Western Quolls (Das 'urus geoffroii) survived here and nowhere else. (Density of woodland understorey and habitat fragmentation may be factors too.) These mammals once ranged as far east as inland New South Wales, but survive today only in the broad region where $1(080$ plants grow:

In Dryandra Woodland, famed for its Numbats, the dominant shrub is Sandplain Poison (Castrolobium microcarpum). Most of the Numbats l've seen at 1)ryandra were foraging near the shelter of these plants. Today, under Operation Western Shield, national parks and other south-western reserves are regularly baited with 1080 , greatly complementing the ad conferred by the toxic plants. 1080 baits are safe for feral-animal control in this region because the mative fama is so tolerant-quolls do not die if they swallow a bait. Thanks to baiting. Numbat, bettong and quoll numbers are rising, and authorities are returning them to reserves where they vanished long ago. Western Australia is now a world leader in animal reintroductions.
$108(0)$ plants are by no means confined to south-western Australia. Fluoroacetate was first isolated from a toxic African legume, and was later detected in a South American species. It also occurs in one Castrololium (Desert Poison Bush, (s. grandiflorum) that ranges across northern Australia (the others are confined to the south-west). It is sometimes produced by Georgina Cidgee (.Acacia georgimac), a wattle found in the Northern Territory and north-western Queensland that occasionally poisons Cattle. But the centre for 1080 -producing shrubs remains south-western Australia, home to more than 40 species.

The irony today is that more than a dozen Gastrololium species are now rare, mainly due to persecution by farmers. Hook-point Poison (Ci. hamulosum) is known from only 230 plants, and Ciranite Poison ((3. graniticum) has a global population below 850 . In the eves of many, poison bushes have gone from

Crinkle-leaf Poison (Gastrolobium villosum) was one of the first poison bushes encountered by Sheep because it grows freely in the Darling Range on the outskirts of Perth.
plants people despise to plants worthy of conservation. (iiven their special role in conserving Australia's biodiversity, the least we can do for these plants is afford them a promising future. \square

FURTHER READING

Everist, S.L., 1974. Poisonous plants of Australia. Angus \& Robertson: Sydncy:

Hopper, S., 1991. Doison peas: deadly' protectors. Landscope $6(-4): 4+50$.

Twigg, L.E. \& King, D.R., 1991. The impact of flumorocetate-bearing vegetation on mative Australian famma: a review: ()ikos $61:+12-4.3()$

Tim Low is a Brisibane-baseis BIOLOC(ISI ANI) WRITER. HIS most recent boor, The neif Nattre (Pengiuln, 2())2), won THE 2 () (I) WESTFIELD/WAVERLEY AWARI) FOR EXCELI IENC:E IN RESFARCH.

Since 1983 WE HAVE BEEN STUDYING POSSUMS AND GLIDERS IN THE Mountain Ash forests of Victoria.

PLAYING POSSUM

BY DAUID IINDENMAYER \& ROSS GUNNINGHAM

Leadbeater's Possum is a highly agile and rapidly moving arboreal marsupial. Here it is climbing on small branches to collect pollen and nectar from flowers.

IIS I)USK IN A I'AlC.II ()I (OI)growth Moumtain Ash forest in the Cemtral Highlands of Victoria. The calls of the daytime birds begin to wane. signalling the changeover to the amimal night shift-owls, mightiars and an extraordinary diversity of possums and gliders. Half an hour later a large prossum emerges from a hollow halfiay up a tronk. There's a rain of soats as the animal relieves itself after a long day asleep in its nest tree. It is the recently recognised and renamed Mountain Brushail Possum (Trichosurrus ammingh/amii), and one of eight different species of possums and gliders that live in the area. From smallest to largest, they are the Feathertail Glider. Eastern-P'gmy: possum, Sugar Cilider. Leadheater's Possum, Yellow-hellied (ilider, Common Rengtail Possum, (ireater Cilider and Mount.an Brushtail Possum. But how can so many species from the one broad group coexist in the same forest?

S
INCE 198.3. ANI) WItII THE HELP OI nore than $4 . \overline{\mathrm{O}}$ (o) volunteer obsemers. we have been collecting data on possum and glider ecology and behaviour in the Mountann Ash forests of Victoria. These data show important differences in the habitat requirements of each species of possum and glider. For example. less than eight per cent of Mountain Ash forests are currently sutable for Leadbeater's Possum (G) momobelideus leatheateri)—one of the famal emblems of Victoria and an endangered species that semds foresters and conservationists alike into apoplexy: The species typually occurs in both old-growth forest and young regrowth forests where there are many hollow trees for mesting and momerous understorey wattles for food (see "Stirring the Possum". Nature Aust. Autumn 2(0)2). In contrast, the (ireater Gider (Petaurodes molans) is most likely to be found in old-growth stands. The Yellow-bellied Cilider (Petaurus australis) also shows a preference for old-growth forest and in the region it occurs almost exclussely in Mountain Ash landscapes withon closed catchments set aside for water production, where such stands are extensive and largely matragmented.

Most Greater Gliders in Mountain Ash forests are black with a white underbelly.
Predominately white-coloured animals are uncommon, although nearly all the animals in a small population near the town of Healesville are white.

We believe such differences are important for the coexistence of these animals.

Despite the different habitat preferences, there is one feature that almost all the species have in common-an abundance of trees with hollows, without which the majority of possums and gliders simply cannot survive. The one exception is the Common Ringtail Possum (Pseudocheirus percerinus), which builds a nest (or drey) in dense foliage. although many individuals still prefer to use hollows in the cool, wet environments of Mountain Ash forest.
Possums and gliders do not occupy just any hollow. They can be very selective in what they choose, perlhaps because they spend up to 75 per cent of their lives living inside them. Not only do anmals vary in their choice of hol-

Like almost all species of possums and gliders in the Mountain Ash forests of Victoria the Yellow-bellied Glider is dependent on large trees with hollows in which to nest and shelter.

low tree species. but also the tree height. diameter and levels of tree decay. moluding number and types of conities. For example. Leadbeater's Possums prefer short but large-diameter hollow trees that are well decosed. In contrast, closeIy related Sugar Ciliders (Petuurus breviapps) opt for trees with numerous long slits or fissures. Greater Giliders most often use very tall trees in the early stages of decony. Perhaps these tall trees give Greater Ciliders (the least agile of Australion marsupial gliders) the best 'flying start' to the bight-allowning them to move long distances away from their nest sites. Storing close to a nest tree (for feeding or socialising) is not a
good strategy hecause it mght attract predators like owls.
Differences in the preferred types of nesting trees allow possums and gliders to 'divey up' a key resource in the forest. Sharing of the same nest tree by different species is mare (less than two per cent of cases) and. when it occurs, is typacally between a large species (such as a Cireater (ilider) and a small one (such as I cadtheater's I'ossum). However, as always in ecology, some of the "general rules are there to be broken and we did record one case of Leadtheaters Possums and Sugar Ciliders sharing not only the same nest tree but also the same hollow. Other differences in tree-hollow

The Common Ringtail Possum is the only species of possum or glider that is not totally dependent on tree hollows in Mountain Ash forests. Nevertheless, the cold and wet conditions of these forests mean that most animals use hollows instead of constructing nests (called dreys).

unage alluong the different species of possumss and gliders involve the timung of emergence atter dusk. Typiailly: the smallest tpecties (the Feethertail Gilider. Acrobures prymutens) is the first to emerge. then the internediate--ized Sugar Gilder. Leadbeateri Possumn and Yellow-bellied (ilider. The largest species (the Creater Cilider and Mountain Brushtail P'ossum) are usually the last to emerge from their nest trees sometimes up to +0 minutes after duak. The reasons for the differences in cmergence times could be related to metabolism and diet. Small possums and glid-

ers are 'high-energy amimals and probably need to begin feeding as soon as posisible after dusk, seeking out insects, pollen and nectar. Larger species have greater stores of energy and call afford a more leisurely start to the night's feedmg proceedngs

A betifr unditrstaniding, of thil diverse fanma of Mountain Ash forests is critical for finding effective conservation strategies. Extensive areas of the forests are clearfelled each year to produce paper and timber. Intensive clearfelling operations are not ecologi-
cally sustainable and are known to have detrimental impacts on many forest animals, particularly the suite of specties that depend on tree hollows, which take hundreds of years to form.
l'art of the solution to the problem is to set aside large areas of forest from logging. such as in mature reserves and national parks. The Yarra Ranges National Park, for example, has become a promment part of the Central Highlands region in recent years. The park is particularly important for the Vellowbellied (ilider, which is strongly associated with large unfragmented areas of

The rippled skin of the Sugar Glider's gliding membranes helps distinguish it from the very similar-looking and closely related Leabeater's Possum.

(Right) The Mountain Brushtail Possum is the largest species of possum in the Mountain Ash forests. Its longer ears and feet and shorter tail distinguish it from the recently recognised Short-eared Possum (Trichosurus caninus) that occurs in northern New South Wales and Queensland.
old-growth Mountam Ash forest (not found in surroundmg wood-production forests)

However. because of the pootential impacts of wildfires and possible climate change, mature-conservation strategies are also needed outside the Yara Ranges National Park. ()ur work on the habitat preterences of possums and gliders con help reduce the risks when it comes to logging. For example, one 'popular" idea in forest management is to identify particular species that indicate the presence of other species. The concept has great cumency in the USA, although it has rarely been put through its paces with rigorous scientific scrutinv: ()ur data show that no single species of possum or glider (or group of species) was a good indicator of the presence of any other species. This result highlights the need to focus on the management of all the species of possums and gliders and not just the ones considered to be "indicators"
With the possible exception of the Yellow-bellied Gilider, it should be possible to log forest and still retain suitable habitat for most species of possums and gliders-but only if new and more ecologically appropriate harvesting methods (alternative to cleartelling) are widely used. Because different possum and glider species rarely share the same nest tree logging methods must dime to retam many more hollow trees, and other trees that will eventaally develop hollows, on logged sites

Developing these ecologically semsitive logging methods will be a real challenge for forest managers. However, forest-management agencies must adopt such measures if they wish to ensure the Mountain Ash forests remain biologically diverse and a key part of Australia's natural heritage. To this end, and in parmership with the Victorian Govern-

The Eastern Pygmy-possum (Cercartetus nanus) is rarely seen in Mountain Ash forests. Most of the animals we have observed there have been in pitfall traps dug for surveys of reptiles,
particularly in areas with abundant tree ferns.

ment. in leccember ? 0 on 2 we started a new field experiment to test the biodiversity value of improwed logging practices. With the help of dedicated volumteers, we will assess whether "islands" ot forest retamed within logged coupes are useful for possums and gliders (as well as other groups such as birds and reptiles) and whether modified forestry practices c.m maleed create the sorts of habitats

FURTHER READING;

L.indenthajer, D.13., Iソ97. Differences in the hioles! ${ }^{\prime}$ and ecology of arboreal
marsupials in southeastern Alastralian forest I. Manmal. 78: | | $17-1$ 127.

Limdermmajer; I). B., 2()(1)2. Ciliders of Australia: a matural history. Uninersity of Néu' South Wikes Press: Sjedncép.
L.indermaryer; D) B. \& Beaton, E., 20)(o). I ife in the tall eucalypt forests. New Holland Publishors: Sjodnce'

1997. Patterns of © - (ataremice amon! arboreal marsuphals in the forest of central I ïtoria, south-easterm Ausmalia. Aust. I. Ecol. 22: 3\&(1) 3+6.

Limdennmijer, D).B. \& Franklin, I.I: 20(1)2. Conserving forest bodiversity: a comprehensive multiscaled approach Ishand Press: Wishingson, I)C.
1)AVII) LINI)ENMAYER ANI) R(OSS (UNNIN(.HAM ARI: AssO)(IATI: PROFESSORS OI= E(O)I () (.Y ANI) STATISIICS, RESPE GIVEIY, AI IHE Centre for resource ©
Evvironmentai Siuties al lhe Austrailan Nationai Univiersity in Canbirra. THieir worg in the MoUNIAIN AsH I(ORISI OF IllF Centrai I hicili anios of Vic:iorla HAS BEEN UNI)ERWAY SINCL 198.3. VOIUNIEIRS INIIRESTII IN JOINING HHEM ()N FHEII) RESEARCH (AMI'S SH()UII) CAII TIII EARTHWAT(H INSIIIUTE IN MFIbOURNE (ON (1,3) 9682 6828

The story of how feathers evolved is far from over

THE FUZZY FRONTIER
 BY STEVE SALISBURY

（Previous page）Confuciusornis is one of the oldest birds known after Archaeopteryx．Literally hundreds of specimens of this magpie－sized bird have now been found in Liaoning Province， suggesting it may have lived in large colonies around the forested lake margins．It is much more bird－like than Archaeopteryx，with a considerably larger breastbone，reduced bony tail and no teeth．Confuciusornis was apparently sexually dimorphic，with many of the larger specimens－ presumably the males－possessing a pair of exceptionally long，scale－like tail feathers．

IN 1868．THOMAS HUXIEY declared that dimosaurs gave rise to birds．He based his clam（on Comproghathus，a $1 . \overline{5}(1-1$ illion－ vear－old dinosalur fossil from Solnhofen．（iermany．whose delicate hind legs were remarkably smilar to those of table fowl．The discosery seven years earlier of Arehacopterye．a fossil bird with a long bony tail，toothed jaws and chawed fingers．had convinced many people that birds were somehow related to reptiles．But Compseghathers was the fossil that placed dinosaurs firm－ ly in the middle of this complex evo－ lutionary eguation． Wings．clamed Huxley，must have grown out of rudi－ mentary forelmbs And feathers： Whether Compseg＇ mathus had them． Husley could only guess．Neverthe－ less．his theory dearly reguired that scales had somehow trans－ formed into feath－ ers．The question was not just how， but why：

LIAONING PROUINCE

seemed to be transforming theropods into a motley crew of fuミニン feathered freaks overnight．

As new＇s of these dinosaurs spread． palacontologists began arguing ower what the strange fibres represented．To many，the best explanation was that they were long filmentous integuments，not unlike mammalian hair，only much thicker．As such，they could be consid－ ered proto－feathers，the long－sort－after transitional structure between dongate reptilian scales and simple down－like feathers．（）thers，however，were quick to demmiss these fibres as fraved bits of decaying flesh．most likely collagen．a protein found in commective tisule．But before any kind of consellsus could be reached． liaoming pro－ duced another （wo，even more amazing fossils： Protoarchacopteryex and Cindipteryex

While there may have been doubts about the body colering of Sinosamoptery． this wasn＇t the case with Protedr－ dhatopterye and Caudiptery． Both theoe dino－ saurs were cos－ ered in structures

IN（）ToIBER I99O．（HINESE INI） Camadian palacontologists revealed semsational photographes of a new thero－ pod dinosaur from China．The scenentif－ ic world stood with its jaws agrape．This was Simosambopler）＇（＂Chinese dragon Feather＇）．About a metre long，the 125－ million－vear－old fossils from Liaonmeg Province，north of beifing．looked very smmar to those of Compsograthus． except for one very striking difference： each simosamopterye specimen was sur－ rounded by a balo of dark，fuzzy fibres （see＂Feathered Dinosaur＂，Niture Alust． Spring 1997）．

Cimblipteryes also b．as a tuti of true feathers attached to its second．clawed finger．

In palaeontology its matally a long walt between major diseonernes．In the case of feathers and fuzz．for example． we had to wait 13.5 year between the first Arehacopter）s speemmen and Simbsumbeptery．In the late ferols．how－ ever．Liatoning Province seemed to be transformang theropods into a mothes crew of fuzsy feathered treak overmight．In ト9）！．hot on the heels of

Beipiassarrus. Estimated to have been over two metres long, Beipiansamitus is the largest fuzzy dinosaur yet found. It is also one of only a few dinosaurs that belong to Therizinosauridae, an unusual group of theropods endemic to castern Asta and North America. The discovery of feather-like filaments in a therizinosaurid signalled to palaeontologists that fuzz may have been much more ubiquitous among theropods than was initially thought.

And they were right. A few months later, I iaoning turned up the Chinese
bird dragon Simornithosamms the theropod everyone had been wating for: This is becaluse it is a "feathered" dromacosalurid, or "raptor" (see "D)inosaturs of a Feather...". Nature Alast Spring 200(1), and of all the dinosaurs, it is the dromaeosaturids that are most similar to birds anatomically: At first glance, the turker-sized Simornithosaurus looks like it was covered in shaggy black hair. However. detailed amalysis of these structures has revealed that they are in fact multiple branching filaments, as opposed to the simple, fibre-like struc-

A reconstructed scene from the heart of the fuzzy frontier-Liaoning Province, north-eastern China, 125 million years ago. In the right foreground, two 'proto-feathered' Sinosauropteryx approach a pair of Psittacosaurus, a beaked ceratopsian dinosaur with quill-like structures along the upper surface of its tail. Behind them, two
Beipiaosaurus browse the lower branches of lakeside trees for insects. At two metres in length these unusual-looking therizinosaurids were the largest of the fuzzy dinosaurs of their day. To the right of the Psittacosaurus, feathered dromaeosaurids ('raptors') display to each other to assert dominance. Two male Confuciusornis, one of the world's first flying birds, play out a similar game in the trees.

The turkey-sized Caudipteryx (left) must rank as one of the most unusual dinosaurs ever discovered. Articulated skeletons (above) of several individuals have now been found in Liaoning Province, north-eastern China. Attached to each of its short, clawed forelimbs was a tuft of long, symmetrical feathers. In combination with the jaunty fan of feathers sprouting from the tip of its tail, they may have been used for threat and mating displays in a manner similar to many modern-day ground birds.
tures adorning Simosamopteres and Beipmosaumes.

Both Fuzzy and teathered theropods continue to be discovered. The tlock now includes four more dromacosaturids: two species of Mictoraptor and another two that are yet to be named, including one that is clothed in feathers almost identical to the down feathers of modern birds. Amazingly,

Down (top left), contour or body (middle left) and flight (right) feathers of a Masked Owl (Tyto
novaehollandiae), and a contour feather (bottom left) of a Powerful Owl (Ninox strenua).

FEATHER FACTS

Like hair or scales, feathers are formed from the outer layer of skin and are made of a substance called keratin. Contour (body) and flight feathers have a hollow central shaft (the quill) that divides the feather into two vanes, each of which comprises a series of barbs. Adjacent barbs are hooked together by tiny structures called barbules. Consequently, each vane acts as a single interlocking sheet rather than a series of separate hairs.
Contour feathers only have barbules on the barbs towards the tip. The barbs at the base are therefore separate, and often take on a ruffled, almost hair-like appearance. Barbs on down feathers lack barbules altogether. Some down feathers even lack a quill.

The feathers of modern birds come in many shapes and sizes, each type serving multiple purposes. For instance, primary and tail feathers are used for flight and display, whereas down feathers help maintain body heat.

A bird's flight feathers are anchored tightly to its wing bones. The primary flight feathers are attached to the wrist and hand, forming the outer half of the wing, whereas the secondary flight feathers are attached to the forearm. A small tuft of secondaries, known as the alula, is also attached to remnants of the thumb.

If a bird's secondaries are clipped, it can still fly, but remove no more than the tips of its primaries and it will be grounded. The reasons for this seem to relate to the shape of each type of feather, specifically its vanes. The primaries of flying birds have asymmetrical vanes. The leading edge is thinner than the trailing edge, so that each feather has an airfoil-like cross-section. With the wing fully spread, it is thought that the outer half of each primary acts as a small, independent airfoil or winglet, helping to increase the lift generated by the rest of the wing during takeoff and to prevent stalling at low flying speeds. If these winglets are taken out of the equation, the total amount of lift generated by the wing is reduced considerably, making flapping flight almost impossible to maintain. In flightless birds, however, the vanes on the feathers that are attached to the wrist and hand are symmetrical, similar to the secondaries of flying birds. Lacking an aerodynamic profile, these symmetrical feathers do not generate very much lift when the wing is extended and flapped. Combined with the smaller size of their wings, this is probably one of the main reasons why birds with fully symmetrical wing feathers can't fly.

Still considered the world's oldest bird, Archaeopteryx was first discovered in 1859 in the lithographic limestones of Solnhofen, southern Germany. It is similar to many theropod dinosaurs in possessing a toothed beak, claws on its fingers and a long, bony tail. Its wings, on the other hand, are very avian, with the same number of primary and secondary flight feathers as those of modern-day flying birds. Although incapable of sustained flapping flight (as indicated by its small wishbone), Archaeopteryx probably partook in rudimentary aerial excursions, if only for short distances.
sensus among palaeontologists is a long way off.
In light of the shortcomings associated with both the flight and insulation hypotheses, many palaeontologists have opted for a slightly "sexier" idea, suggesting that the symmetrical feathers of Protoarchasopterys and Candiptery. evolved for use in mating and threat displays. Another idea for the origin of feathers relates to biomechanical support. It's now known that feathers and feather-like structures in the skin can help brace the body agamst mechanical loads such as torque during fast runming. Lacking the finsed skeletal elements seen in modern birds, particularly the speedy ratites, some theropods may have evolved proto-feathers in order to 'tighten up' their ruming style. The same principle was used by Nike to develop the body-hugging suit that helped Cathy Freeman win gold in the 2000 Olympics.

DFSPITE THIE RI:CENT HLURRY ()F fuzzy fossil finds and new evolutionary scemarios for the origin of birds,

> FEATHERS AND feather-like structures in the skin can help brace the body' against mechanical loads during fast
> rullling.

the story of how feathers evolved is far from oner, and a mumber of fossils are calusing palaeontologists to rethink their ideas. (One such fossil is Lompisquamm. This 22(1-million-tear-old, mouse-size reptile from Kyrgyzstan, central Asia, had received little attention since it was first described in 197(). But after seeing the specimen in 1999 . Fery Jones (Oregon State University) and colleagues decided it was far more bird-like than previously thought. What got their attention was L ongisylnama's "planage": sprouting from the midline of its back is
a series of paired, vane-like integmonentary appendages up to 12 centimetres long.

When it was first discovered. Lengispuamas integumentary appendages were considered to be elongate scales. possibly used for gliding or sexual display: But Jones at al. interpreted them as feathers, thrusting Longisiguma from relative obscurity into the centre of a bitter evolutionary debate. For not onls does Lomgisinnima pre-date Achaeoptery. by 70 million vears, it's also not a dinosaur, let alone a theropod.

Most palacontologists are not convinced. Interestingly though, Jones et al. came up with their idea prior to the discovery of scale-like tail feathers in two carly birds. Protopterye and Confinciusormis. So mathe their interpretation isn't so far off. and the origin of feathers, or feather-like integumentary appendages at least, is more complicated than at first thought.
As most proponents of the dinosami.ln origin of birds (and thos feathers) are quick to point out, all the fizzy dinosaurs discovered so far are fleet-

Cane Toads have

 ENCIRCLED AND ENTERED ARNHEM LAND, ONE OF THE STRONGHOLDS OF AbORIGINAL CULTURES IN NORTHERN AUSTRALIA.
INVASION of the RUBBISH FROGS

BY JON AITMAN, TONY GRIFFITHS \& PETER WHITEHEAD

AUSIRALIANS HAVE MUCH TO Celbrate about our countrys micpue hertage: its wildlife, its people and its landscapes. We appland actions that sustain our heritage and agonise over potential losses. But we have all but ignored an invasion of suicidal adventurers that threatens people. wildlife and the delicate balance between the two.
No, we are not promoting hysterin about human refugees in leaky boats. We have had more than enough of that. We are talking about the introduced C.ane Toad (Bufo marimus) and its march across the Top End. Cane Toads are rampant in Kakadu National Park, and moving rapidly through some of $\mathrm{A} u$ tralia's most biodiverse landsapes. They have encircled and entered Arnhem Land. one of the strongholds of Abo riginal cultures in northern Australia.
The advance grard of Canc Toads is thimming out the ranks of naive mative predators that attack them. Even frogeating predaters can't slow the advance, because they camnot cope with the suite of toxins in the toads' skin and glands. Goammas, quolls, smakes, crocodiles and turtles are dying quickly-poisoned. We know defintively that many animals will die-from laboratory studies, reports from skilled lay observers, and scientific studies now underway in Kakadu. But what proportion of the predator populations will die? Will
those populations ever recover to anything like former levels: And if they do. how long will it take?

AISIRAIIA FRE(QUENTIY CASTliciAles thers failing to meet good conservation standards, yet sumbendered to C.ane Toads with barely a whimper. In stark contrast to the leaky boats, the Cane Toad imasion was never a decisive election issue, it did not attract fimding in the hundreds of millions. nor did it lead to mobilisation of armed forces. The best response we can point to was a short-term research program in the carly: 1990) , backed by limited funding. that stopped prematurely, and a current small-scale feasibility study looking at control by a genetically modified virus. Why didn't we get serious about this threat?
Objective science was used to juntify our wimpiness. Control is difficult because Cane Toads are hard to kill. The things that kill them also kill native frogs and even fishes. Because there is no "proof" that extinction is calsed by toads, we didn't feel obliged to act. Costs would be high, risks substamtial. and benefits in preventing extinctions questionable. All seems logical and objective but there is one critical flaw. Why was the risk of extmetion the only or best criterion for justifying intervention, and who decided that this was all that Australians cared about?

Many Kuninjku people still depend on native animals and plants for food. Although Magpie Geese (Anseranas semipalmata) appear not to be directly threatened by Cane Toads, other dietary species are likely to decline significantly.

Far from being objective, the science that justified resigned pastivity was loaded down with values. In our view. they were mostly the values of boutique conservation-concern for the prett. the rare and the endangered. Proposals made by one of us (Peter Whitehead for studies of the Cane Toad's social and cultural impacts in the early 1990 s were regarded as ineligible for funding because the Cane Toad had not been listed as a threateming process under endangered species legislation. In the world of boutigue conservation, the antmals most affected by C.ane Toads were too commonplace or uncharismatic to warant serious concern. Such dechions effectively denied the relevaluce of all but these boutique perspectives.
()ne perspective denied was that of

the eastern Kuninjku people of central Arnhem Land. One of us (Jon Altman) lived and worked with this Aborigimal population more than 20 years ago, recording the way they used landscapes and interacted with animals. The Kuninjku way of life, how they viewed their place in the world, and the way they interacted with other societies, all depended fundamentally on a relationship with wildlife. More than half their income and food came from common, 'boring' species. Their existence as a people depended on continued abundance of some of the sorts of animals that contemporary science had apparently decided were unimportant.

Fieldwork recently completed indicates that, over the intervening two decades, relationships of the same peo-
ple with wildlife have, if anything, strengthened. This strength does not derive from isolation from the rest of society or the market economy. Indeed. many Kuninjku engage creatively with the wider Australian and global communities, producing artworks representing wildlife, landscape and ancestral knowledge now displayed in galleries around the world. One Kuninjku man, John Mawurndjul, was recently described as the foremost living Aboriginal artist. Such recognition has not alienated him from his cultural obligations. He uses income from art to strengthen Kuninjku contact with their country by providing the means (vehicles and fuel) for others to access and maintain their ancestral lands.

What will the Cane Toad do to rela-

A Keelback (Tropidonophis mairii) consuming a Cane Toad. This snake is one of the few native predators able to eat toads without succumbing to their toxins.
tionships between people and land: We cannot predict with certainty, as there have been next to no quantitative studies of the effects of Cane Toads on native wildlife. But there will be change. Several species of goannas and shortnecked turtles are likely to be affected. Frilled Lizards (Chlamrdosumms kingii) will probably eat young toads and die. Crocodiles, both Freshwater (Crocodylus gohnstonii) and Saltwater (C. porosus). will perish. The abundance of a substantial proportion of the $25+$ species that Kuninjku people depend on for their livelihood may be reduced.

The survival of Aboriginal people as

Cane Toad

Bufo marinus

Classification

Family Bufonidae ('true' toads).

Identification

Stocky amphibian up to 15 cm long with warty skin. Females larger and smoother-skinned than males. Olive- to reddish-brown on top, with paler belly. Bony ridges over each eye, and a pair of enlarged poison glands on each shoulder.

Distribution and Habitat

Native to Central and South America. Deliberately introduced to Aust. in 1930s. Since spread through eastern and northern Qid, parts of NSW, and presently westwards across NT. Occupies many habitats, from tropical rainforest to semi-arid sandstone ranges.

Biology

Mostly active in cool of late evening and early morning. Eats mostly ants, termites and beetles, but also other frogs, small reptiles, mammals and even small birds. Females produce $10,000-20,000$ eggs, sometimes twice a season. Tadpoles emerge in a few days, metamorphose in around 3 weeks, and reach adult size $(7-8 \mathrm{~cm})$ within a year.

Young Cane Toads that have recently completed metamorphosis. Even these small toads are toxic.
hunter-gatherers has also depended on treating toxic species with great carcomspection. How should they react to new ammals that exude poison or even squint toxims when harassed: Should they stop eating fish or turtles that eat tadpoles or toads. even if these predators survive the expernence: Should they stop harvesting ammals that are badly affeceed by the toads so that the valnerable arent put at further risk? How wall reduced avalability of toad-affected peoter mflamee demand on other spectes:

Effects on wildlite will probable be worst at the margins of the atfected spectess ranges. Where wildife is barely hanging on, Cane Toads may upset all unedsy égulibrimn and tip margmal populations into oblivion. (Fenetically and ecologically distanct subpopulations. like the Dwart Freshwater Crocodiles of the upper Liverpool Rever. will be eqpectally valnerable These arocodiles oce ar at low densities
in creeks high up in infertile sandstone gorges. where even mappetising prey is smapped up eagerly: Being small, the : will be killed by smaller doses of toad toxin than their downstream cousins. Should Aboriginal harvesters avoid these places altogether? And if they do, who will look after the land, maintam fire regimes and manage wildlife?

QULSTIONS OF THIS SORT STRIKE AI the heart of Kuminjku lives. This invasion challenges Kuninjku culture and their capacity to live off the land much more fundamentally than the impact of a few refugees on the status of urban Australians. The Kuninjku situation demands a response, albeit less extravagant than reactions to leaky boats.

These issues came into sharp focus in July 20()) , when some Kuminjku had their first interaction with a Cane Toad entering Nandel, a camp on a floodplain near the Tomkinson River. They had heard a lot about these ammals, so the arrival caused a commotion. The camp was alive with people yelling, throwing burning logs at the toad. and

THE CAMP

was alive with people pelling, throwing burning logs at the toad, and grabbing children.

encounter and take wildlife in the absence of toads, and then seeing how this changes after toad intasion, could provide a measure of the toads' impact on other amimals' abundance Using more consentional methods of wildite survey: scientists have found it difficult to measure changes in abundance of highly mobile ammals like goamas. Although knowing the impact of toads will be cold comfort to Kumingiu people, it might help other Aboriginal groups plan for the invasion and take steps to reduce the impact on their lives.

The Australian constitution provides that loss of private rights should be compensated by governments, a principle extended to Indigenous customary rights by the Natme Title At in 1993. The courts have established that actions by govermments affecting private property: even indirectly; can attract liability: One example followed creation of a conservation reserve in Victoria, where failure to control wild Dogs should have been anticipated as a problem for neighbours, and action taken to prevent damage. Because they failed to act, managers of the reserve (the State) were held

The Frillneck Lizard is a conspicuous member of the north Australian reptile fauna, popular with tourists and also used for food by Aboriginal people. It is particularly susceptible to Cane Toad toxins.

A dead Cane Toad being consumed by ants. Many more ants are eaten by toads, with huge numbers ants and other invertebrates being snapped up.
to be financially liable for losses of Sheep on an adjoining property

We are not suggesting that Kuminjku people mount a legal case against those who introduced Cane Toads or failed to do anything about their spread. However, we do suggest that the Australian Government has a moral obligation to treat serionsly the impacts on Kumingul harvesters and other Native Title interests.

Rather than direct compensation, a better way will be to celebrate and actively support expansion of the role that the Kuningku and others already play in caring for large areas of land. In northern Australia, many wildlife: species are declining, probably due to the combined effects of grazing by introduced species and changed fire regimes. Our most difficult conservation problems in the north stem from loss of human presence, rather than too

WE AVERTED OUR GAZES

from the effects
of the Cane Toad, leaving the victims to find solutions.
many people. Unoccupied country insites other biological invaders. including Swamp Buffaloes, Horses, ants, bees, invasive woody weeds and aggressive African grasses. The typically passive Australian approach of relying on reserves to mantain wildlife is failmg. Reserve management does not mimic the effects of people moving through the country in the quest for food-skilfully using fire to foster abundance of the wildlife they value. reducing risks of larger and intense
fires, and intercepting intaders before they are beyond conventional control. Some view the paltry (iovermment support received by Kuminjku people as a demeaning form of welfare. A beter perspective will value what they already do for land management and take the opportumity to build on it. This can be done relatively cheaply. manly by better supporting existing organsations by properly recognising their mational conservation role. Associations like the Bawinanga Aboriginal Corporation, an outstation resource agency that helps Kuminjku people stay active on them country, presently struggle to find creative ways to secure support. Bawimallga has, for example, worked with traditional owners to collect specimens of the Liverpool River 1)warf Freshwater Crocodile for rearing in captivity aray from Cane Toads, with no finallatial support from any govermment. But the
camot deal with a growing ardy of entirely new conservation problems imposed by decisions taken elsewhere (weeds, feral stock, exotic insects, and more) unless reahstically finded.

Non-Indigenous Australians have bequeathed Indigenous land managers a suite of difficult problems, some of which reguire spectalised equipment or finding to reach remote areas. For decades we averted our gazes from the pernicious effects of the Cane Toad. leaving the victims to find solutions. We should do much better than turn our backs on the new challenges. Aboriginal people deserve support to apply their customary skills, not is remote curiosities but as full partners and critical contributors to Australia's conservation goals.

FURTHER READING
Prechand, W\%. 1984. Cane toads: a review of their biology and impact on Australia. Technical Report No. 19: 1-67.

Frechund, W\%, 1986. Invasion north: successful concuest by the Cane Tond. Ausi. Nill. Hisi. 22(2): 69-72.

Iack/y'll, !?, 1992. The status of come toads in the Northern Territory:
 van Dam, R..4., Halden, D.I. Er Begs. (3.1., 2()()2. A preliminary risk assessment of cane toads in Kakadu National Park. Superpising Scicmist Reporn 164, Embionmental Resciach Institute of the Supervising Scicmist. Darwin.

Professor Jon Ailiman is IIrector of tili: Centrf ior Aboriginal Economic Poilcy Research at Tife. Austrailan Naitonai Univirsity. He has a discili linary backc;rouni) IN ECONOMIC:S ANI) ANTHROPOLOGY. ANI) HIS RESEARCH INTERESTS INC:I UIDE. THE ROLE OF CUSTOMARY PRACTICES AS A SUSTAINABIE COMPONENT OF MODERN INDIGENOUS HYBIRII) ECONOMIES IN NORTHIERN AUSTRAIIA. Tony Griffiths ani) Pleter Wimteheal) work al hiil: ARC: Key Centrefor Tropical Wilitile Managiemint al hile Nortilern Territory Univirsity. Both are. WIIIIIIE BIOLOCISTS WITH AN INIEREST IN MANACIEMENT OF WILIDIIFE. habitats and popul ations subleci (I) HARVESI.

Aboriginal children from central Arnhem Land whose lives and experience of their homelands will be changed by the arrival of the Cane Toad. The relatively few toads encountered in the advance are presently a source of interest and some amusement, but the full effects have yet to be felt.

THERE S BIEEN A BOOR ANI a televiston documbentary on Bogong Moths. but the made their first real splash to a worldwide andience of a billion or natore when they dropped in on the ofemmer coremony of the Sydney ()lymux (iames. Although they had made the news in previous vears be mathen Parlament Howse, this was the big time!
I had gust returned froma a conterence in Swatzerland. and had not ewen made it back to the office in bindabone when S() () (i called. (ould this be my lastmamute invitation to jom the symehromised swimming team: I had missed the ()lympuc coverage up entil then, sate for a few shatched viewings at varions arport lounges. and so was manare of the moth problem. The question fiom s()(:)(; Was simple: how do you stop
the moths coming to the brightly lit ()lompic Stadman: My tonglac-intcheck response. "Have you thought of postponing the ()lympics: ". was yunckIf brushed asde. What could mot be broshed aside was the mingrating horde of Bogong Moths whose ancestors had been magrating at about this tame of year for millemm. We decided the beet solatoon was to shat the lights off after the eveningevents so the moths woulde eontinte on then way for the rest of the might. The moths can tly up to 300 hilomettes in a night, so even half a might hould see them well on therr was

The world soon forgot about Bogeng Moths but only temporarily. In ()c̈tober the following vear the were back in the news this thate as cartiers of arsente: "Havoc in the air a mischact fies south for summer". as The Sydue) Morning Herald put it

C(OR 1HE PAら1 25 YFARS. 1 HAD) BFE aking a passing interest in Boerong Mothes (Agrontis minat). There secomed to be little more that could be sad about them. S.m Common (SolR () , m ha work in the early |950, at Mt (imerers near Camberra, had doctumented thens basie bologs and the manal mughton mad aestination (a stmmer dormance smimar to winter hibernations). Later Rob Blakers, an Honoum stadent at the Australan National Unmersity (ANU) expranded stader to the Smow Mounams. Josephinc Flood had written The moth hamers about the Aboriginal pre history and their ammoll treks to the monntams to feed on the moths. M finterest an the moths was atse a a food source. but for the many ambals, math and teral. that today feed sin them

Dead grass littered with the remains of Bogong Moths rang immediate alarm bells.

everything from Foxes to fishes, ravens to robins, and skinks to small mammals, moluding the endangered Mountain Pygmy-possum (Burramy's parvus). I was also keeping tabs on how moth numbers varied from year to year by revisiting the same aestivating moth site at South Ramshead. south-west of Mt Kosciuszko, that I first visited in 1980.
This is what I was doing in January $2(0) 1$ when I came across swathes of freshly killed grass. confined to the area where unusually heavy November rams had washed moth debris out from among the rocks and down the grassy slope. A metre or so on either side of the outwash, the grass was alive and vibrant green. Bogong Moths were obviously the key to the problem.

I sent moths off to be analysed for organic herbicide residues but the results came back negative. In the meantime, I
contacted Stuart Johnston (ANU), who had carlier documented the lethal effects on alpine plants of the zinc from galvanised wire used to stabilise mulch during the revegetation of the monntains in the 1950 s and $6(6)$ s. He told me to collect soil samples from inside the cave, outside where the outwash had flowed. and just a metre or so to the side where the grass was still alive. When he analysed the samples, he found arsenic in the soils from the caves and under the dead grass, but not in the soil from under the live grass. Now that we kinew what to look for. we went back together and sampled further soils and the live and dead grass, and of course the moths themselves. Bango! Arsenic was right through the cham from moth to soil to grass.

I began ringing around. Who could be using arsenic sprays in this day and

During summer the moths rely on the cool, dark spaces found among boulders on the rocky summits.
age: The major use of assenic. I found. is still in agriculture in various forms including monosodium methylarsomate (MSMA). To my surprise. I found that there are five MSMA herbicide spays still licensed for use in agriculture in New South Wales. but their current use is so limited that they didnit appear to be the source. At this stage I was thinking that the arsenic appearance was a onc-offi.

I was also interested in the place of Bogong Moths in the food cham. Could the arsenic have also travelled that route: Over the vears, Landa Broome (National Parks \& Wildlife Service) had collected droppings of the Mountain Pygmepossum for dietary analysis and there had been an unsettling decrease in possum numbers that summer. Wee subsampled the dropping and sent them off to pathology for amalysis. This wassit a ome-off case: there was arsenic present in samples from every year! To check whether it was right through the food cham and to try and set some sort of backerround level. I sampled three firther small mammal species from the area: another
ommivore (Bush Rat, Ramms fissipes) whose mumbers had also decreased. an mesetivore (1)usky Antechinus. AntedioIms suminsomit) whose population had crashed. and a herbivore (Broadtoothed Rat, Mastacomb: fiuselts). The first two had arsenic in their droppings, While the last (the herbivere) had effectively nome. In other words, there was no backeround arsemic: it was all coming in with the moths.
But were the amimals excreting all the arsenic, or were they accumblating some in their tissues? I asked a pathologist whether the amount of arsenic accommatated in the tissues conuld be determined from hlood samples. He said yes. and that heed need only five milliliteres of blood to test for it. Still, for a f(l)-gram mammal, this was planly impossible. Foses. on the other hand. were a bigger. hetter possibility: because up to 70 per cent of their summer diet near Mi Kosciuszo is composed of Bogong Moths. Unfortunately: the Fox-bating we had done over the previous winter to protect the Mountain Pymy-possum had been too effective and no Foxes were to be seen.

Bogong Moth

Agrotis infusa
Classification
Order Lepidoptera, family Noctuidae.
Identification
Small brown moth, 2.5 cm long with $4-\mathrm{cm}$ wingspan, 0.3 g .

Distribution

Most important breeding grounds are areas of self-mulching soils (grey, cracking clays) from southern Qld through western NSW to Vic. Summer aestivation sites range from Mt Gingera (ACT) through Snowy Mountains and Victorian Alps to Grampians.

Biology

The moths migrate en masse from larval sites to the mountains in spring where they undergo gregarious aestivation in rock crevices and caves. Become sexually mature after the summer's aestivation and their return to the plains. Here each female lays about 2,000 eggs. Adults live for up to 9 months. Larvae (cutworms) feed on annual dicotyledons. Adults feed on nectar on their migratory flights but do not feed once aestivation commences, although they will drink water.

T(IV) (QULSIHONS REMAINEI): HON geographacally widecpread was the effect of the arsenic, and where was it coming from: It was getting late in the season and the mothe were emmating. but I managed to get mooths and sond samples from a momber of sites in the Snow? Mountains and Mt Cingerat and moths from Mt Hotham and Mt Buffalo in Victoria. Whale these were being analved I walked the high top" examining every large rocky protuberance finding wideppred evidence of moths and large areas of dead graw ()ver two stmmers I colle ted s.muple in New South Wales from Mt Tingatingy (the stmmit of which is in Victo-

ria) through the Snowy Mountains (including the summit of Mt Koscuuszk(), the Bogrong Peaks and outliers such as Mt Morgan.
The moths require cool monst conditions to get them through a long summer of fastang while they live on the fat that makes up 0.5 per cent of their dry body weight. There may be more than one generation of moths each year but the spring generation must migrate to the mowntam because their ammal food plants are not avalable during summer for the larvae to feed on. They fly by might and feed on nectar from cucalypt and other blossoms. Mothe that we canght early in the season on Mit

Gingaringy had a sweet honey smell (unlike moths that do not feed during aestavation in the caves). The motho may arrive too early to find a way moto the traditional high-altitude camps. Which might still be choked with smow. They will often then sit it out at lower-altitude sutes, where they try to hide from ravens, which patrol the grasslands at thas time of the year. The number of moths huilds up from September to a maximum in December, with the lower-altitude sites bowly compteing in favour of the higher rocky outcrops and boulder fields. There they chang to the rock walls, heads tucked under the wings of the mothe in front like over-

Bogong Moths feed on the way to the mountains but once there they survive the summer on their fat reserves.
lapping tiles, in concentrations of up to 17, (mos) per sybare metre.
Eventually the moths return to the lowlands to lay their eges in April-May when the dutum mams bring on new growth, and food is avalable for their offipring. Even if the moths go back exactly to where they originated, the trouble with locating the source of the arsemic is the harge area over which the emigrating mothe dipperse. The moths favour the grey cracking. clay wils that extend from the Darling ()owns in Quecmsland, south to Victoria. Would

it be persible to track down an arsenic source over such an extemsive area?

We discussed the possibility that the mothes collected the arsenic in nectar on the way to the mountams but this was quickly discounted. Alec Costin, whose studies of Snow! Mountain soils go back over 50 vears, agreed that, if the arsenic was of natural origin then, over the thousands of years that moths have been coming to the mombtains, the arsenic would have mixed more thoroughly with the soil and would occur away from just the present-day dramage lines from the rocky tops. An agricultural source seemed the most logical answer, particularly as the larval homesite areas have historically been used for grazing and cropping, and the Bogong

Moth cutworm larvac have sometimes been considered agricultural pests.

One question was of fundamental importance though. Do Bogong Moths mingle during their migration, or do moths from a particular larval site favour a certain aestivation site? We inadvertently stumbled on the answer in the results that came back for arsenic levels in moths. At the two sites where we had both soil and moth samples (Mt (imgera and South Ramshead). arsenic levels in the soil reflected those found in the moths. Moths from Mt (ingera contamed very litele or no arsenic and the soil, which was a result of many vears accumulation, also had little or none. South Ramshead, on the other hand, had a high level of arsemic in the

At only about two centimetres in length, Bogongs are not the large moths that some people think.
vear's crop of mothe and in the many fears accumblation in the soil. This seemed to indicate that the mothe were migrating from particular larral sites to traditional aestivation sites.

Now all we would bave to do was backtrack to where the aremo-loaded moths came from. But easier sumd than done. The moths could hardly be radiotracked across their migration route. What we needed was something like a genetic or chemical matere. So, from thee last week in fuly to the end of August in 200) . Stuart fohmston started the laborious job of sampling harac every: for) kilometres from (ioondiwo
di and Dirranbandi in southern Queensland through New South Wales to Mildura and Echuca in northern Victoria.
Tracking the origin of the arsenicloaded moths will involve either finding some marker common to both the soil and adult moths or the adults and larvace. If arsenic is contributing towards the decline of the Mountain Pygmypossmm. We will need to know where the arsenic is coming from. Unfortumately my uplication for further fimding was unsuccessful. So for now I have soil samples sitting underneath my table-temis table, vials of preserved harvae under my desk, and a freezer at home fill of Bogong Moths labelled
with the mames of momentain tops. I did get a somple of South Ramshead mothe from the 20101/20112 season amalyed for free at the University of Canberra. Arsenic was still there. Before the carly winter snowfalls. I walked up to South R.amshead to find there had beem .mother washout of moth debris: and where it bad flowed, the grass had died in a thin strip. So the problem continues. \square

FURTHER REAIIING;

Common, I.I:B., 1954. A smuly of the cololeg) of the adult begorge moth Agrotis infusal (Boised.) (Lepidoptera: Noctuidace). with special referemace to its hehariour durines migration amd aestiontion. Aust. I. Zool. 2: $22.3-26.3$

Food, J. . M., 1980. The moth hunters. Anstralian Institute of Ahorigimal Stmdics: Canberta.
(irctu, K., Broomé, L.. Heinze, D) \& Johmston, S., 2(0)1. Loneg distance mansport of asemic ho migrating Bogengs Morls from derricultural lowidands to momitain coospstems. Vic. Nat. 118 : $112-116$.
1)R Ken (irben is the alpine ECOIOGisi WIth the NSW National. P'ARKS \& WIIDIIFF SERVICE IN IIIE Snowy Mountains Recilon. His INTERESTS ARE IN COHID-CI IMMATE BIC)L(CiY, PARTICUI ARIY THEFAUNA (OF AIPINE REGOIONS OF THE WORLII).

Maglies have extraor dinarily HIGHLY DEVELOPED AUDITORY PER CEPTION AND GREAT MUSICAL ABILITIES.

MAGPIE MIMICRY

by gisela kaplan

LISIEN TO IHE (FUIING sombets of a comramonge the laughs of a kookabur ra, or the deafening screeches of a cockatoo and. even with your eves closed. you would know you are in Australia. We live in a bird-rich continent and, while some of our birds may be unnsual to look at, it is their vocalisations that really set them apart.

Compared to birds from the northern hemisphere, Australian birds are generally much louder. use a far greater range of notes, and have a propensity to mimic other sounds. This last point is not widely known. even though Alec Chisholm chamed in his book Bird wonders of Anstralia (19-48) that more tham 50 Australian bird species can mimic. At least hatf of the ones be mamed have sunce been contirmed fincluding bowerbirds. butcherbirds. the Australian Magpie and Noisy Miner). Europe may boast its starlings. and North America its mocking birds but. a as far as we know, no continent call quite match Australias record for bird momics.

But what do we mean by mimicry: Sounds. such as alarm calls, are easily shared by man bird species. and birds might have overlapping vocal ranges that make it appear as if one spectes is mumicking another. Some hirds maty
even incorporate the odd small smiper from another birdis song into their own. But this is not what I mean. By mimicry I am referring to sustained, repeated and ummistakable sounds that are recongmisably specific to another species rather than the one using them.
C.urrently: the most fanous Australian mimics are the lyrebirds. The Superb Lyrebird (Memma movachollandiace) in particular: has one of the most powerful and spectacular songs of ans bird. Not only does the male incorperate many distinct bird calls into his repertoire but be may also include sounds of other ammals or even of inamimate objects. and he strings these together in a symphony of sounds designed to win the f.avours of a female Female lverehirds usually do not mimic. although they can sing very well. (It is indeed another unusual guality of mane Australian songhirds that both males and females sing. unlike their northern hemisphere counterparts in which singing is often the sole domain of the male.)

At the risk of rocking the boat. I propose that the Supers Lyehtird shares first prize as a mimic with the Austalian Magpie (Gymmorhima tibicen). Most Australians are so familiar with the warthling tumes of these birds that they hardly notice them. However. my

A rare photo (late afternoon) of a Magpie encountering one of its archenemies, the Lace Monitor, which preys on nestlings. Not long after this photo was taken, the Magpie jabbed the lizard in the back of the neck with its beak. On the ground, the Lace Monitor will usually give way to the Magpie, but not necessarily at the Magpie's nest.

own research has found that Australun Magpies are capable of traversing four octaves with ease, we elegant orescendos and desecond in one weeping line reminiscent of Maria Callas in her beet opera performances. Insteded of pure notes their songs (both male and female) have as many rich owertones a the human voice .mad. like the lyrebrds. Magpies are able to lary the tellsion of cach of the two separate membarates of their vocal organ (the symax) to strake two differelte tumes at the same times.
Magpie song falls into several distinct categories. There are the pre-dawn-nocturnal calls. These tend to be a little more monotomons thans. and sometimes different from, the day songs At this stage. we are not sure whether these calls have any speceitic functions Another category is the territorial sons.

which includes loud individual calls. carolling of two or more Magpies, and duetting between males and females. Then there are the alarm calls. So far I have classified eight distinctly different types of alarm calls for the Magpie an unusually large range compared to other avian species. The felurtl category is the subsong. which can be thought of as singing to oneself. This belongs to the individual and includes the typical warbling sounds that fill the summer's air. Mimicry is found only within this category.

THil exciting part of mimicry in Australian birds is its widespread use in the wild. We all know that parrots can mimic and learn to speak human words, but these behaviours are ustually seen as artefacts of captivity: So
far there have only been two reported cases of parrots mimicking in the wild: one of the African (irey Parrot (Pithachs crithocus), and another of young Galahs (Cisatua resectiapilla) raised by Major Mitchell Cockatoos (C. leadbeateri) adopting Major Mitchell vocalisations. However, the liberal use of mimicry by Magpies and other Australian birds is especially interesting because, unlike the mimicry of pet parrots, it is independent of human intervention or training.
To date I have identified 15 types of mimicry used by Magpies throughout Australia, in all States except the Northern Territory. These somids include the calls of the Red Wattlehird. Noisy Miner. Masked Lapwing, Southern Boobook, Barking Owl. Pied Currawong and Laughing Kookaburra, a Horse neighing. Cat mewing and Iog

A Magpie pair (male left, female right) with their young. Nestlings may emit very faint, high-pitched vocalisations.
barking, to mame just the most fimiliar sounds. Magpies use the new someds freely and in any part of their song. By contrast. male lyrebirds add each new sound to their repertoire as if it were a bead on a necklace; that is, all someds remain in a fixed seguence and new sounds get added to make the seguences longer (see "Lyrebirds: Veiled in Secre(y", Nature Aust. Winter IO9S).
My recordings represent the vocalis.atioms of 22 Magpies. including only two that I h.and-rased. One of the handrased Magpies even developed the ability to learn human language someds. words and phases. As all my samples of Magpie minicry are derived from dif-
ferent geographical areas. I assume them to be of unrelated individuals with nonoverlapping territories. Except for the two hand-raised birds, only one was t.mine enough to take food directly from humans. All the others were wild but lived near humans and had been in their respective tervitories for some years.
There have been many stories about Magpie minnicry of human speed. ()ne early myth was that Magpies needed their tongues split in order to talk. (of course, there is no basis to thas because the sounds that Magpies (and any birels) make do not involve the tongue. lastead. sound is produced when arr from the lungs passes across and vibrates
the membranes of the syrme, which is situated at the bottom of the windpre (tracheal). If the Magpies really did talk after the poor victims had had therr tongues cut, it would have been because they had problems feedng themselves and needed to stay close to humans to be fed.

Unlike lyrehiad mamicry, that of Maypies is fleeting. sporadic and not tied to time of year or specticic occasions and. for this reason, has remained difficult to document. Although a few people had heard that Magres could mimic, mans remained seceptical. Occasionally: this even led to f.mmily arguments. In desperation, those wishing to prove then

This pair of Magpies is carolling as a form
of pair bonding and confirmation of territorial rights. The male, on the right,
started the tune and the female joined him
a few seconds later. Note the upright position of the head, which is typical for carolling but not for mimicry.

Magpies are always alert and aware of their environment. Tilting of the head to the right means that the left eye is facing upwards and scanning the sky.
point went out and made recordings of the mimicking birds and then played them back to their incredulous families. This is how I have been able to collect examples of momicry from across Australia. Several of these tapes were sent to me for verification and some of the mimicry sections have become part of my own amalysis.

BE(AUSE THERE ARE S() MANY oublished samples of lyrebird mimicry: I used lyrebiads as a kind of vardstack for the mimicry performance of the Magpie. However, I .am not so sure anymore whether the Magpie should not be the yardstick against which lyrebirds ought to be measured. The most mpressive feature of Magpee momicry is the extremely accurate renderang of the

A sonagram (top) of the laugh of a Laughing Kookaburra, showing frequency (in kilohertz) against time (in seconds). The sonagram at the bottom is of a Magpie mimicking this Kookaburra's call. Note the similarity in structure.

Australian Magpie

Gymnorhina tibicen

Classification

Family Artamidae, subfamily Cracticinae.

Identification

Large (40-44 cm, 330-440 g), black-and-white bird with robust bill (about 52 mm long). Sexes similar, except for female's greyish (as opposed to white) nape (area at back of neck).

Distribution and Habitat

Throughout Aust. and also southern NG. Introduced to NZ. Open eucalypt woodlands, farmlands, urban parks and gardens.

Biology

Sedentary, territorial. Largely insectivorous, but also eats seeds and some meat. Breeds mainly Aug.-Nov. but possibly up to Feb. Usually lays 2-4 eggs in stick nest. Incubation 24 days by female, $30-36$ days to fledging. Parents continue to feed fledglings for 3 months. Lifespan $20-25$ years.

A wide-open beak is typical of carolling. Carolling can be used as a call to announce a food source and, in those cases, the call may just be issued by a single Magpie on its own.
structure of each sound. By contrast and on close analysis, the Superb I.yrebird glosses over specific sound structures and, before you know it, he is already onto the next bout of sounds. The Magpic is very different-not as quick in the rendering as the lyrebind, but methodical and precise as if each part of the harmonic structure really mattered

The same attention to detail is evident in all cases of Magpic mamicry, be it performed in the wild or in captivity. In one example, I managed to record the duetting call of a pair of Latughning Kookaburras (Dacelo nobaeguineae) housed in the cage next to my handraised female Magple. The two kookaburas were recovernge from fractures and had not vocalised for wecks. One morning they burst out into a song that lasted just six seconds. And then they were silent agam. The next day: I heard (and recorded) the Magpie coprying the entire phrase flawlessly, as confimed by comparison of the two somagrams. There were no other kookiblorras in the region and there had been no opportunty for her to learn these sounds before. (Only a few bumans have such complete auditory recall. Mozart was one of them. It is certamly a most unusual talent.

As mentioned before Mapres are capable of mimicking human speech. However, if the bird regards someone as a parent figure (and that is often the case when a Magpoe is hand-rancel, wheh now reguires a licence), it will never copy that person. Maghies have stract rules about vocalisations. Copring parents is taboo. The reason for tha is aseochated with their need to doperse. Magpies are territorial and usually the offspring are driven out of the parents territory before the nest breedng season begims. Sometimes. they are allowed to stay on as beppers but they eventually disperse to find their own terratory. Vocalisations are individual markers and they go with the termente. They are like trademarks and. once they have been registered, they camont be used by my
other bird. not even their own offypring. Some bits of a song may be borrowed from a neighbour. but ustally not more than a quarter.
My female hand-rased Maghe never learned to speak a single word from me. deopite me trying daily, patiently and repeatedly for half a year. Instead, mother member of the houschold who spent absolutely no time with the bird (she certamly datn't help) with any of the chores assochated with it!) infirnatmgly had phases copred instantaneous-ly-things like "Co away". or "live got dimmer for you"... and with a strong Australian accent. The Magpie practised these phrases over and over dgain through most of the year. I have since learned that all Magpies investigated so far mimic sounds only of permanent inhabiants of their terntory: That rules out any visitors (haman or otherwise). trancient occupants and any occasional sounds.

ANI) NOW FOR THE MOST IMPORTANI guestion: why do Magpies mimic? We do know that they don't use it as an embellishment to increase their chances of mating, as is the case in lyrebieds. For a start, both male and female Magpies mimic and they do so in various circumstances, not just in the presence of the opposite sex.

Could mminery discourage predators? Magpie predators include the Lace Monitor (Vitramus barius), which mave steal the eggs and foung, and most birds of pres: including the Southern BoO book (Nimow monesectandiwe) and Barking (Owl (\times. commivens). Magpies have been known to mimic both these owl species but there is no evidence to date that this has an effect on potential predators. The Chamel-billed Cuckoo (Sc) theops movechollambliae) is also an enemy of Magpes, parasitising their nests, yet Magpies are not kinown to mimic their calls.

Maybe mimiory is just a mistake? It has been postulated that large vocal repertoires cants all be hardwired and must depend on some learming. In this vew, mimicry ming simply be an error 11 copping the bird's own song. However, this option has to be ruled out for Magpies, because I have heard them deliberately and selectively practising
mimiory: The accuaty of the mimicked sounds also shows that Magpies have extraordmarily highly developed audtory perception and great musical abilities. In short, mimiory is no accident.
I believe that Magpies mimic as part of knowing their territory: They haw a geographic and a vocal map, and these mave belong together. The fact that probably not all Magries mimic suggests that mimicty is an optional and additional way of knowing. However, whether mimacry is related to social stricture (do only some learn to minic becaluse of their position in the group:) or to cognition (is it only the clever Magpies that can reproduce sounds of other occupants .and therefore defend their territory better?) remains to be seem.

So. which is the better mimic-the Supert Lyrebird or the Magpie? As far as showmanship goes. the answer is the lyrebird. But if it's accuracy and preservation of knowledge that youre after. take the Magpie. \square

FURTHER READING;

Brown, L: D)., Filrahurgh, S.M. E~
Viltman, C.I., 1988. Songe sharing in a group-living solnghird, the Alustralian
m!gpie, Gymmorhina tibicen, I. Vocal sharin! within and amonges social groups. Behaviour $1(1)+(1-2): 1-28$.

Kıpldan, (天., 1999. Song structure and function of mimicry' in the Alustralicun magyic (Gymorhina tibicen) compared (1) the lyrehird (Menura spp.). Internatl I. Comp. Psychol. 12(-4): 219-2+1.

Kiplim, (., in press The Australian Magpie. Natmal History Serves. University of New South Wiales Press: Sydner

Simderson, K. \& Crouch, H., 1993. local repertoire of the Alustralitu Magpie Gymmorhima tibicen in South Alustralia. Aust. Bird Watcher 1.5(t): 162-16.t.

Professor Gisha Kablan 1.ECIURES ON ANIMAI b HAVIOUR ANI) CONIDUCIS RESIARCH IN COMMUNI(ATIC)N ANI) HICHER cognitions. at the Centrle for Niulroscience Ani) Animai Behaviour. School of Bological, BIOMEDICAL ANI) Molec ui ar Sciences. Univirsity (o) Nilw Enciani), Armiliale, Niw Souih W'ales.

A juvenile Magpie is transferred by the author to an outdoor aviary for flight practice after recovering from a wing injury. The bird is complaining noisily about being held, although it is not distressed. Magpies are always good at vocally communicating their emotions.

Transverse Ladybird (Coccinella transversalis).

heautiful nature

BY BRENT WIISON
NATURE FOCUS

Praying mantid (family Mantidae)

The creature from the deep lagoon

With some difficulty, she mamaged to combime the taxi driver to carry' the humbun-sized fish bock to the musermm in his tavi.

When Mark Twain's obituary was published prematurely, he remarked "the reports of my death are greatly exaggerated". It's a sentiment echoed in the history of the coelacanth, an extraordimary fish believed to have become extinct 70 million years ago.

On 22 December 19.38 a coelacanth in its carly 30 s was trawled from about 70 metres off the East Coast of South Africa. Marjorie Courtenay-Latimer, who was curator of a small musemon in the nearby coastal fishing town of East London, visited the docked trawler and recognised the blue fin sticking up among the bodies of sharks and rays as something special.

With some difficulty, she managed to convince the taxi driver who had driven her to the docks to carry the human-sized fish back to the musemm in his taxi. Laid out on a museum table, the primitive-looking fish, with its stumpy fins, puppy-dog tail and hard bony scales, just didn't make sense, even though the Chairman of the museum dismissed it as "nothing but a rock cod". This was an ichtheological gaffe equivalent to John Lemnon's Aunt Mimi saying to the budding Beatle. "The gutar's alright for a hobly: John. but it won't earn you any mone".

However. Marjoric had a friend who could tell the difference between a rock cod and a coelacantlo, and she was about to change his life forever. James Leonard Brierley (ILB) Smith was a chemistry lecturer and competent ichehyologist at Rhodes University: Unfortunately he was away on holidass, so Marjorie wrote to him and included
a sketch of the fish. When he fimally got her letter II days later. he immediately sent her a telegram asking her to preserve the skeleton and gills. Alas, even living fossils go off and, because Marjorie had only a litere of formalin to preserve the body. time and summer temperatures took their toll. By the time

> Alas, even living fossils go off and time and summer temperatures took their toll.

JLB got her letter, she had arranged for a taxidermist to mount the specimen and discard the rotting internal organs. To, JLB this was a tragedy of Shakespearean proportions and fuelled his obsession to find a complete specimen. However when he finally got to see the fish on 16 February 1939, he wrote, "Yes, there was not a shadow of a doube, scale by scale, bone by bone, fin by fin, it was a true Coclacantla."

He mamed it Lattimeria chalummar and it was a hit around the world, not only because it was a "living fossil, virtually
unchanged for 400 million years", but because, in those days, fossil coelacanths were thought to be our distant aquatic relatives whose descendants evolved to live on land. The coelacanelis most distinctive features are its stocky paired peccoral and pelvic fins, and it was thought that these evolved into the limbs that carried the first amimals onto) land. (Currently, lungfishes hold that honour as the closest relatives of the first land amimals.) While the real thing is better than a fossil. the evolutionary atfinities of the coelacanth are still being debated, and of course nobody really knows why it survived when almost all its relatives became extinct.
The specimen Marjoric had found appears to have come from an elusive population of coelacanths only discorered in South Africa in 200(1). For JLB it was to be 14 years of distributing thousands of 'coelacanth wanted' posters before somebody in the Comoros Islands, an archipelago between Madagascar and Mozambicpue, recognised that the fish in the photograph was what the locals called gombessa (meaning taboo, probably because it tasted bad). One or two were calught a year and a gombessa had just been fished from the depths. When ILB heard of the find, he was frantic to get to Comoros before history repeated itself. He wept tears of joy onto the second coelacanth as he held it for the first time. It was taken to Crahamstown where, like a human lyug ing state, it also brought tears to the eves of the thousands of curious onlookers who filed past. but these were perthaps more from formalin fumes than tears of joy:
IL 13 never saw a live coelacinth before he died in 1968. However, his wife, also a skilled ichehyologist, wept when. shortly before her death in 1985, the first images of swimming coclacanths were projected onto a wall in her hospital room. While almost 50 gears of coelacanth research had focussed on their amatomy; physiology and genetics, scientists could now watch and track living coelacanths from submersibles and with tracking devices. They found that coelacanths live for at least to years (posibly over $1(01)$. and are nocturmal predators that hunt other fishes and souids. I uring the day they huddle engether in small voleanic canes between 100 and 200

A coelacanth (Latimeria chalumnae) in its natural environment drifting at around 200 metres depth along the steep lava slopes of the Comoros Islands off Africa's East Coast.
metres below the water surface, where their metallic blue colour and white speckled flecks perfectly camoutlage them aganst the cave walls. Coelacantlis often stand on their heads when approached and move as if they are dancong Since they have a bran the size of a grape it is unlikely this behaviour is because they are pleased to see visitors. It is more likely that it helps them pick up electrical signals from prey and predators through an electroreceptive organ in the snout. With a jaw-dropping, hinged skull they can increase their gape to grab prey and, although they manage short bursts of speed, for most of the time their metabolism dictates that they move slowly, like gentle residents in a deepsea rest home.

While fishermen in the Comoros had their gombessa, fishermen in Indonesia's northern Sulawesi, I(),(0)()
kilometres away, had their Ruga Lant or 'King of the Sea'. And in September 1997 Armaz Mehta Erdmamn, on her honeymoon with marine biologist husband Mark Erdmann, spotted one on a cart that was being wheeled through the Manado fish market. Mark recogmised it as a coelacanth, but didn't realise that they were only known from the East Coast of Africa. Although ILB got a skin and skeleton from the first specimen, Mark had only photographs of the Indonesian specimen before it became just another fish in a fish market
Back in the US, the enormous significance of their find was realised, and they returned to Sulawesi where fate was much kinder to them than it had been to JI B, and only ten months later another Indonesian coelacanth was canglat. It was named Latimeria menodocmsis and DNA amalysis suggested it
had separated from the Comoroan population of coelacantles about five million years ago. Which just goes to show that, although coelacanths would not be out of place at a Devonian dinner party, evolutionary mechanisms are never static...even 70 million years after a premature obituary. \square

FURTHER REAIDINC;

Weinlerg, S., 20)(0). A fish caught in time: the search for the coelacanth. Fourth Esstate Lad: Lomdon.
1)r Simion 1). P()LIARI) is (OURATOR ()F INVERIEBIRAII Z()()I (X;Y AI Canterbibury Museum, ant) Seni()r. FEIL(ox in IIE S(Ifo()I () BKII (OICAI SCIENCES AI IHI UNIVERSITY ()F C.ANTFRBURY, IN C.IIRISI CIIUR(H.NEW ZEAI ANI). IHE WISHES TO DEDICAII THIS ARTICIF TO MARJORIE ((OURILNAY-LAI IMI:R

Duchenne de Boulogne taught us a lot about the facial expression of human emotions. Here he poses with one of his patients.

Making faces

Most human facial expressions are displaped and materstood cross-culturally and worlduide.

APIC:TURE PAINTS A THOUSANI) words, but so can a face. Facial expressions reveal many distinct emotions. A face can saly it all. It can elicit a loving embrace, request a meeting outside. or warn others to back off. But we can sometimes get it wrong, as with the subtle differences between being bothered or being angry: and interpreting the difterence can be important if we wish to avoid a fight. Throw in make-up, or Botox injections, and reading a face can be hard. Is anyone dear on what Michael dackson is feeling?

Recently I came across an amazing interactive catalogne of homan facial expressions. Over I. (o) words identify the 412 discrete emotional concepts. which are arranged into 24 groups. In alphabetical order, these are atraid. angry: bored. bothered, disbelieving. disgusted, excited, fond, happy: hurt. interested, kind, liked, romantic, sad, sneaky, sorry, sure, surprised. thinking. touched. unfriendly, unsure and wanting. The program, called "Mind Reading", was specitically designed by Simon Baron-Cohen (University of Cambridge) to help people with disabilities like autism who find it difficult to read emotional expression and to understand what others are thanking. There is a whole drama course in here, but there's also a lot for the ordinary person, and who doesn't have trouble reading minds these days?

For a latgh, try the romantic group in front of the mirror, and see how eftectively you can convince yourselt of 12 distinct variations on this theme: attracted. attractive. bewitched, enticed,

> Throw in make-up, or Botox injections, and reading a face can be hard. Is anyone clear on what Michael Jackson is feeling?

entrancing, flattering, flitatious, intimate, passionate romantic, seduced, seductive. How did humans evolve such

It seems that most human facial expressions are displayed and under－ stood cross－culturally and worldwide． This according to Steven Pinker（Mass－ achusetts Institute of Techology）．pro－ vides evidence that homan brains are not a tabula rased or blank slate to be shaped wolely by experience．but that genes play a profenund role in shaping human nature．Culture is only possible because we inherited the mental machinery to create and learn it．Most people believe that the mature versus murture debate is a dead isssue and are resigned to the conclusion that we humans develop from a mix of both． But how dead is the issue？
Pinker argues that many people still ding to the ide．a of a Blank Slate and other related historical concepts，such as the Noble Savage（natural imnocence of humans）and the Ghost in the Machine （existence of a human soul）．And he points out that these views have com－ bined to mistepresent homan nature and cogntive science，often with dire political and social consequences． Think of religion，stem cells and the abortion debate．Cognitive neuroscien－ tists believe that our seme of self is root－ ed in the complex network of inherited bain systems．However，for those who believe in the existence of a soul or life force the idea of having genetically determined brains is abhorrent because they think it means we would lose our free will and would be able to abrogate responsibility for our actions（blame it on the genes！）．Pinker shows that this logic is wrong．
Still，social scientists marely admit that human behaviour is determined by the genes．Those who have suggested an inherited genetic basis for 1() ，intelli－ gence and other personality traits have been quickly vilified．For example． famous anthropologist Margaret Mead attacked Paul Ekman for supporting the ideas that factal expression had evolved， and that all races had a recent common ancestry：（）thers called him a fascist and a racist．
The history of anthropology is full of debate on just what determines cultural change．Culture，biology and phesical enviromments seem so intertwined that it remains difficult to define general laws about why different societies have
developed，sometimes into hunters． gatherers，famers and industrial citi－ zens．Psychological make－up may be a factor and there is still argument about whether all cultural groups share the same full gamut of emotions and facial expressions．It is difficult to track archacological expressions of emotion far back in time，although we could cexamine ancient portrats and sculp－ tures．Darwin and Duchemne did（and found that the Greek sculptors could not always crack a true expression）．The carliest portraits I know of are from the Upper Palacolithic of France：five young faces etched in stone，two of which bear the ummistakeable down－turned mouth of sadness．But even with a core group of shared homan emotions and expres－ sions．how can we sometimes get it so wrong and totally mistead a face：Per－ haps some of the 412 emotional feelings are used so infrequently that we forget． Time to check the＂Mind Reading＂ program again．\square

FURTHER READING

Baren－Cohen，S．，2（0）3．Mind reading： an interactive guide to emotions．$D I D$ \＆（ C$)-\mathrm{R}(\mathrm{O}$ M set．Human Emotions Ltd for University of Cambridge．
www：human－cmotions．com．
Ducternue de Boulegne，（B．－B．，1990）．The mechamism of homan facial expression． Edited and translated loy R．．A．
Cumbertson．First published 1862．
Cambridge（iniversity Iress：Cimbluidge．
1）uhard，1．－P．，199．3．Lepper Palacolithic figures as a reflection of human morphology＇ and social ogganizution．Antiquity 67：8．3． 91.

Ekman，P？，2（））（3．Emotions revealed． Weidenfeld \＆゙ Nicholson：した．

Pinker，S．，2（1）12．The blank slate：the modern demial of human nature．Allan Lame＇Penguin：London．

1）RRICliarl）Fullagiar is a Senior Resfarcel Filiow in Archaleologiy al the
University ol Syidniy．
HE IS PARIICUIARIY INTERESTEI in arrehafologitcal ininc：ators （）：IIUMAN BEHAVIOUR．

Electrostimulation of the superficial muscles of the forehead and neck produce the expressions of fright（top） and，combined with an open mouth，terror．

To understand the real story of the life of the Wollemi Pine, you need to read its rings.

rower and have thicker walls, creating a darker band in the trunk cross-section. Overriding this ammal prottern is an approximately $35-$ year cycle that may be related to El Niño events, with growth pulses reflecting the good vears.

The blemishes and cracks in the wood have their own stories to tell. Banks and Brack blame a pocket of rot from the tree's 1 beth decade on a falling rock. The rock may have gouged the bark, letting in bacteria and fingi to infect the woody tissue. Fires were rate in the canvon but soon after the rock fall a bushfire burnt the outer laver of the thick bubbly bark. The tree survived the fire, but not long atter its 200th birthday a violent windstorm bent the tree so far over that its insides fractured. This "wind shake was permanently recorded as a large semi-circular crack now inside the trunk. However, the storm had its benefits as well. with all the nearby siblings apparently torn from the groundfor in the twilight of its life this Wollemi Pine had an amazing growth spurt unhampered by competition.

Another of Banks's collengues, expert electron microscopist Roger Heady. has had an even more in-depth look at the wood. The Wollemi Pine shares differcut microscopic features of its wood-cell matomy with Apathis (Kanri P'one) and Armatria (Hoop P'ine. Buma l'me etc.). vet differs from them in other wass. These features include resin plugs. put rows in a staggered contiguration. and warty structures whose finction are unknown, and can only be obsered by the high resolving power of electron microscopy. Unfortmately the wood ultrastructure so far tells us mothing about which of the two genera is the Wollemi Pines closest relatise currently thought to be Agrethis based on loNA evidence
Farther north, in the ramferents near the border of New South Wale and Queensland, wood amatomy has pronded the critical piece in a botamoal identification puzzle. Prickly jurembe leaso of an unknown spectes were disonered in the Nighte.ap R.ange in the 1950 and sent to the Queemaland Herbarium in Brisbane. where ther were tentativels asigned to the Australanal ramene
tamily Corvnocarpaceac
Forty years later. Robert Kooyman. then a forest ecologist with State Forests of New South Wales, rediscovered these unusual juvenile leaves sprouting from the base of a large tree trunk but again could not confidently identify them. Some years later. while surveying rare or the atened plant species in Nightap National Park, he came across these mbstery trees agath but this time noticed a patch of exposed dead wood on the trunk. The wood-grain was conrse and flecked with dark brown spots.

Any forester, wood-tumer or carpenter will tell you that all woods are different. At the most basic level, softwood, from conifers, is ustally homogeneous in structure while hardwood. from flowering plants, is more variable but often strong. dense and heavy (balsawood being a notable exception). One distinctive wood pattern is that of the banksia and protea fimily (Proteaceae), characterised by an abomdance of large mays. Rays are namow slivers of tissue that radiate through the wood laver of a tree. In the Proteaceace some of the ray cells are larger than others. and appear as dark flecks in a cross-section. This is what Robert Kooyman saw in the mesterious damaged tronk from the Nighteap Range
Kooyman collected folliage. wood and rat-gnawed fruits from the tree and sent them to the Royal Botanic Cardens and Domain Trust in Sydney, where it was contimed as a new species, the NightCap ()ak (Eidothea hardeniana). belonging to a recently described gentus fiom northern (?ueensland. The two known spectes of Eiddothea appear to be relics of a Condwanan lineage that has barely survived in the ramforests of eastern Australia.
Eidothea has another intriguing fea-ture-both species produce a hard "woody" mut with a rery distinctive cross-section, a bit like a walnut. A spechalist in fossil botany: Andrew Rosefeld, now at the Tasmanian Herbarimm. had seen an identical nut illustrated in a book published in 1800. That nut was from a $2(1$-million-year-old fossil found in the Victorian goldfields by the State Govermment Botamst of the day, Baron Ferdinand von Mueller. Mueller

A young Wollemi Pine grown 'in captivity' at the Royal Botanic Gardens Sydney.
misidentified the fossils as belonging to something in the olive family, but then he didn't have access to its wood.
It might seem perfectly reasomable for fossil evidence to be incomplete-who would expect to find well-preserved wood samples attached to leaves. fruts or nuts in the same fossil? But with a living tree all the eritical pieces are there, at some time. Unfortunately, most botanical samples collected and kept in hertharia mechude leases and. if avalable, flowers and fruits, but not wood. In the case of the Nightcap Oak, this useful piece of evidence was lacking. For the Wollem Pine, the wood hasnit vet told us mexthing we didn't already know about its chassification. but it has revealed the details of everyday life for a tree and a forest that were totalls unknown to us just ten years ago. \square

FURTHER REAIIING

 Wollemi Pinc: a captured history: Wollemi Pinc Reconery 'Rem brochure Rapal Botanic (iardens Sedney: Spane'):

Hadr: R.D., Bamks, I. (i. E~E Euns, P D. 20(1)2. Wood anatomy of Wollemi Pine (Wollemia nobilis. Aramatriacence). IAWA Journal 23: 3.39-3.57.

Weston, PH. \& Kinyman, R.M., 2())2. Spstematios of Eidothea (Proteacace), with the description of a new species, E.
hardeniana, from the Nigghtoap Range, north-edstern New. South Wales. Telopea 9: 82 1-832

Dr Tim Entwiste is Itricior or Plant Solences at the Royal Botanic: (iaridens ani) Domain Trusti. Sydney.

reviews

The Dinosaur Dealers: Mission, to Uncover International Fossil Smuggling

T
 beach near Broone Western Australia. Not only were these footprints scientifically important, being the only evidence of a stegosatur trackway in the world and the only evidence of the group in Australia, but they were also sacred to the Aboriginal people of the area. To try and recover the footprints, John Long, vertebrate palaeontologist at the Western Austalian Museum, Perth, hooked up with Sergeant Steve Rogers, Whoming lawman specialising in fossil crimes such as this one. Their search for the dinosaur footprints takes them across the globe and tales of the ir travels (often dangerous) are interspersed with descriptions of other fossil thetts around the world. I ong and Rogers make a great team, although fohn neary blows his cover at the Arizona Mineral and Fossil Show in Tincon. When he insists on correctung a dealers identification of a fossil amphibian as a fish (the latter being Long's speciality)!

Long's intention is to draw attention to the soale of these fossil crimes in the hope that Western Australian (and indeed all Australian) legislators will act to better protect fossil localities. Hopetally this well-written and entertaning book and the accompanying documentary screened last year on SBS will make all Australiams aware of this ever-increasing problem
-ZIRINA IOHANSON
Austrailan Museum

A Guide to Rare \& Threatened Animals in Central Australia

CNTRAL AUSIRAIIA is SPARSELY POPULAIEI but it has witmessed many of the mammal extinctions for which Australia is infamous. Most mammals in the range of $\overline{\mathrm{h}}-\mathrm{B} . \mathrm{j}$ kilograms that were present in the mid 180 os have disappeared from the region: nine are extanct
This gade catalogues the causes of declane and has practical advice on management options for protecting the remaming fana from tive major threats-predators. Rabbits, other feral herbivores, fire and weeds. A section explans how commmonty groups and landholders can access finds for conservation projects.
For of threatened mammals. birds and reptiles. information on description, behaviour, habitat preference. how to find them, and comservation status, is given. Each is illustrated in colour and there are maps of past and present distrabution, and photos of tracks and scats. Fourteen common species of mammals, reptiles and a frog are also illustrated. The authors extemse field experiences firmish mang hints for locating and dentifing elosive (and often nocturnal) fanna
Also included are a directory of useful contacts, a list of field guides. a checklist of central Australian fanam, lndigenous names for ammals, and an index of scientific and common mames. I recommend this compact gaide to all maturalists and land managers concerned about the central Australian fanna.
-Elizablil Cameron
Austrailan Museual

Wildlife on Farms: How to Conserve Native Animals

S
 the ecologists who created this (SIR () book have kept it realistic. They damit that nest boxes mat benefit mananted starlings, that frogs don't alwas indicate envirommental health, and that mative Noisy Mincers pose a problem. even suggesting "a strong case for noisy miner control on many farms" They recommend keeping fish ont of some farm dams to help frogs, and concede that kioalas sometimes kill trees

Much of the book consists of selected species and their needs, for example brown Treecreepers and thene relance on fallen timber. All the examples are vertebrates from south-eastern Australia-the book's man focus-although most of the concepts are applicable everywhere. This small book does not cover habitat restoration in detail, instead recommending the Bushare report Revegetation and widife, by A. Bemnett and colleagues. But it is crammed with practical sugerestions for the thoughtfil farmer wanting to know why all his small birds and foges have grone.

Managing the Grey-headed Flying-fox as a Threatened Species in NSW

Edited by Peggy Eby and Daniel Lunney 2002
\$25

A Symposium on the Dingo
Edited by C.R. Dickman \& Daniel Lunney 2001
$\$ 20$

A Zoological Revolution: using mative fauna to assist in its own survival

Edited by Daniel Lunney \& C.R Dickman 2002
$\$ 25$ (Published with the Australian Museum)

A Clash of Paradigms: Community and Research-based Conservation

Edited by Daniel Lunney, C.R Dickman \& Shelley Burgin 2002
\$I5

©onserving Marine Environments: out of sight; out of mind

Edited by Pat Hutchings and Daniel Lunney 2003
SH5 (mpres, avalable in Seprember 2003.)

Urban Wildlife

Edited by Daniel Lunney and
Shelley Burgin 2003
$\$ 20$
(in press, available October 2003)

Proceedings of a forum held to debate changes to management following its listing as a threatened species. This volume explores the management controversies surrounding fruit crops and camps, and highlights the need for conservation and restorative management.

Proceedings of a forum on a revolutionary approach to conservation by using wildlife to ensure it maintains a value in our society. This special issue explores the scope and potential value in the concept as well as its ethical and social implications

Proceedings of forum that debated whether there is a fundamental difference in the way that researchers and community groups approach the conservation of our fauna. The lively debate that emerged during the forum is a key part of the book.

The rationale for the RZS hosting a marine forum reflects not only Australia's island status and our vast oceanic surroundings, but the work of a small, dedicated band of researchers who have brought so many of the current issues in marine and coastal environments to the surface for public comment. This book is a high water mark in capturing the range of skills that are needed to see and conserve our marine environments.

This book captures the diversity of ideas from the most popular forum the RZS has ever held. Its appeal reflects the fact that Australia is an urbanised society, thus wildlife to most Australians is urban wildlife. This book acknowledges that urban wildlife is a subject on its own, and considers fauna and fauna habitat as a special case in conservation.

Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution
By' John Long, Michacl Archer, Timothy' Flannery and Suzanne Hand. University of New, Solith Wales Press, Syduc), NSW: 20()2, 2. $44 \mathrm{pp} . \$ 69.9 .5 \mathrm{mp}$

THIS BOOOK SUC:CEEDS IN THE IOOUBIE PURPOSE of providing a comprehensive reference on Australian fossil mammals, useful for the specialist, and of making available to the general public an impressive heritage of past biodiversity: The first 37 pages consist of introductory and general chapters, usefully summarising the geological and anatomical concepts necessary to fully appreciate the bulk of the book, which is organised as a fiek guide" of fossil mammals. The general and technical data offered about each of the covered mammalian genera are supplemented by comperent colour reconstructions by artist and palaeontologist Anne Musser, illustrating the life appearance of 60 selected species. The book is clear and well organised, which, combined with the attractive layout and illustrations, make it a successful mixture between an academic volume and a coffee-table book. With all the effort done by authors and designers to make the book accessible to a general audience, it seems regretable that the cover price is high enough to discourage many potential readers. Publishers might have more fath in the appeal of a subject like fossil mammals, which, if not as popular as the dinosaurs, is attractive enough to allow larger initial print orders and more affordable prices.

Musio) Nacional ine Cif:ncias Naturales, Maidrid, Spain

A Handhook to Australian Seashells on Seashores East to West and North to South
By' Barry, Wilsom. Reed New Holland, Syducy, 20012, $18.5 \mathrm{pp} . \$ 29.95 \mathrm{mp}$.

THIS BOOOK CONSISTS BASIC:ALIY OF (OOOUR PHOTOS aCCOMPanied by short descriptive paragraphs. The colour photos, although small, are excellent, but with so few species covered, this book is no more than a tantalising introduction to the marine molluses of Australia. The author tells us that Australia is blessed with tens of thousands of different kinds of shells, of which about 350 are illustrated. With such a small selection of the species that a collector is likely to find, one is left to wonder just what the purpose of a book like this is. To the avid collector who wants to make their collection as complete as possible, the book will be irritatingly shallow, and to the amateur maturalist this is definitely a "shell' book with little information on the living ammals. Although scientific names are present, common mames are given priority: Many of the common names are made up for the book, so are clearly not common in the sense of being in common use. The author discusses this in the book but fails to see the paradox of using non-common 'common' mames. Why is it that book publishers accept that gardeners are clever enough to use Geranium and Callistemon, while other naturalists are deemed incapable of handling words like Fellimand Strombus?
-BII. RUIIman
Ausir.ailan Musfum

Sea Urchins of Australia and the Indo-Pacific

By' Ashley Miskelly. Capricornica Publications, Syduce, 2002, 180 pp. \$3.3.0(1) mp.

AShley Miskelly has hai) A IIfelonc ; INTEREST IN SEA URCHINS and his passion for the subject is evident in this attractive and thorongh book. The book describes and illustrates 86 species of urchins that are found fiom the intertidal to depthe of about 2.00) metres. For each species there is a description of the distribution, the appearance of the test and spines. and comments on habitat and diet. Most species are illustrated by a picture of the live animal and several views of the test without spines. A comprehensive glossary is included with well-labelled photographs to assist the reader with technical terms. The introduction gives an overvew to the classification of sea urchins (Echinoidea).
It would have been useful if the author had included more information for identifying similat species with overlapping distributions. He does this for Parasalenia pohliii and P ? gratiosa, but not for others like Heliocidaris erythrogramma and H. ubleccolata. This minor point aside, the book is a worthwhile addition to the library of anybody interested in our marine fana, be they divers, beacheombers or students of invertebrate zoology:

Ausirailan Musium

SOGIETYPAGE

ANIMAL WELFARE

Fatuna Care \＆Release Inc．
$\mathrm{P}(\mathrm{)}$ Box． 3010
W（）（）｜）VILIE SA ⿹\zh26）II
Ph： $0882+4.4208$
Contact：Natalie Brenton

Membership：\＄3．3．00 Family \＄22．（x）Single $\$ 16.50$ Pensioner

Fatua Rescue of SA
$p()$ Box $2+1$
M（））BURY N（）RTH SA 5（以）2
Ph：（18 8289（18）（
Web：whut fanmarestue．ore．m Contact：Sheila Burbidge

Membershp：\＄30．（1）Family \＄25．0（）Family Concersion \＄50．00 Organisation \＄25．00 Single \＄15．00）Single Concession $\$ 15.010$ Student over is

Tweed Valley Wildlife Carers

 P（）Box 808MURWILLUMBAH NSW 2．48．t Ph：（1） $6,6,72+784$

Contact：llona Roberts

Memberhip：\＄22．00

Wildcare Inc
$P()$ Box 46.4
PALMERST（）N NT（18．3।
队： 1889886121

Membershup：\＄20．00

WIRES

NSW Wildlife Information
\＆Rescue Service
P（）Box 26,1
FORECHVUIIE NSW 20187
や月：リ2 8977 3．3．3．3
\＆ $180006+1188$

Contact：Carol Macl）ougall
－
Membership：$\$+0.00$

BIRDS
Birds Australia
H．5R1versdale Road HAWTHIORN EAST VIC．． 3123队：（139882 2622

Web：wumbirdsaustralia．com．an

Membership：\＄68．0（）Single \＄50．0n Concession \＄108．10 Family（2 members at the same address）\＄87 Family with

concession

Birds Queensland

1）BOX 60197
ST LUC：IA（）II）＋167
Web：umpehordsquechsland orgs．an

Membership：\＄50．00 Single（city） $\$ 34.00$ Student $\$ 45.00$ Single （country）\＄60．（0）Family（city） §ラ̄̄．（1）Fomily（country）

CONSERUATION

Australian Network for Plant Conservation （iP（）Box 1777
（：ANBERRA AC：I 20（1） Ph：122 6250 950）

Web：winu：anlespervan／ampil Contact：Manager

Membershup：\＄＋5．0）

EDUCATION

CSIRO＇s Double Helix
Science Club
P（）Box 225
1）ICKSON AC：T 26012
Ph：112 $6276,604.3$
Web：trinu：（siro，，Iu／heli．．
Contact：fo－Anne Mckac

Membership：\＄27．00 or \＄2． .01

ENVIRONMENTAL

Australian Plants Society Tasmania Inc．

RMB 8987
NEW N（）RFF（）LK TAS．71＋1） Ph： 10.36261 .3976

Sgaplas－index．htm
Contact：foy Coghlan

Membership：$\$ 48.00$

Monash University

Biological Society
4．3Roselyn（rescent BORONIA VIC． 315.

Contact：Prue Smmons

Membership：$\$ 3.00$

MUSEUMS

TAMS—The Australian
Muscum Society
6）College Street
SYI）NEY NSW 201！
Ph：102932106225

Contact：Alson Byyne
－■ ■ ■
Membershup：\＄88．00 Family
\＄70．00）Single \＄52．00 Concession

The Waterhouse Club
SA Museunl
North Terace
AIDELAIDE SA 5unn
P1 ： $11882(1.39802$
Web：whewaterhonseduheors
（1II／wh
Contact：Mary Iou Smpson

Membership： $89(1)$（10）Fanily \＄70．010 Single

NATURAL HISTORY

Dinosatur Club
Australian Museum
Education
6 College Street
SYIDNEY NSW 2010
Ph：（12932（）（2223
Contact：Cathy Lamond

Membership：$\$ 15.09$

Field Naturalists

Association of Canberra （iP（）Box 2．4＂

CANBERRRA AC：T 2（0）1
Ph：112 $0258+72+$
Contact：Rosemary Bleming

Membership：$\$ 20.00$

Western Australian

Naturalists’ Club
$\mathrm{P}(\mathrm{O}$（30x 82．57
PERTH BC：WA G8t＇
Ph：（18 9228 2＋95
 Contact：The Honorary Socretary

Membership：Depends on
category

[^0]
48a

Fish Naps

O: Do fishes slece?

A parrotfish takes a nap in its mucous sleeping bag

 Townsvilie. Q(I)A:This is a complex question with no simple answer. Deciding if a fish is asleep depends on many factors, least of which is the definition of sleep.

In humans, the transition to sleep (or even closing the eyes) involves specific changes in the pattern of brain waves, in the area of the brain called the neocortex. Fishes don't have the same degree of neocortical development as mammals and thus don't display these brain-wave patterns associated with sleep. So, as far as brain-wave patterns go, fishes don't sleep.
If, however, you define sleep as a combination of a reduced metabolic rate, slowed physical activity, lowered response to stimuli and the assumption of a resting posture, then many fishes do sleep. Perhaps the best-known 'sleepers' are the parrotfishes (family Scaridae). Many parrotfishes find a suitable spot on the seafloor and secrete a mocous
envelope in which they spend the night. Such fish normally swim away from a diver by day, but can easily be approached and even gently handled at night.
Many fishes, however, seem not to sleep. Pelagic (occanic) species such as tunas and some sharks never stop swimming. One idea is that, during sleep, sensory information (predominantly visual) gathered during the day is processed to form memories. Fishes that swim constantly in blue oceanic waters receive little 'unusual' visual input and require less 'memory-processing time' and thus need no sleep. This is supported by studies on several species of blind fishes that live in caves. These sightless fishes do not sleep.
Having said all that, though, I did enjoy the simple answer of a young neighbour who told me with contidence that fish can't sleep because they don't have eyelids.

[^1]
Whose Necklace?

Q:
The 'necklace' of eggs shoum in the - accompanying photograph (shoum belonis) was attached to the outside of our house. What lay's them, and why' do they stand off like that?

> -Austin Aidams

Eraring; NSW

A:This characteristic U-shaped arrangement of $3(0-4)$ eggs is the work of a female lacewing. Nymples myrmelconoides-a beautiful, golden brown insect, with filny wings. each of which has a cloudy area near the tip. The wingspan is about six centimetres. The 'necklaces' are sometimes quite common underneath logs in eastern Australia, but in the suburbs the females usually have to settle for the underside of wooden beams or the slats of outside decking. The eggs alternate in two directions. Every second egg is attached to the substrate via a thread and the others bridge between them, so that the whole 'necklace' is supported well away from the log. Why the eggs are held away like this is anybody's guess.

The eggs take about three weeks to hatch, but the small larvate stay together in a group for a while, sometimes for a few days. They then disperse for food-small, soft insects that they can pierce with their long mouthparts and from which they suck the juices. Although they are common, they are not easy to find because they camouflage themselves with particles of debris

A characteristic U-shaped string of lacewing eggs.

It can take a year or longer for the larvae to grow to full size, atter which they yend a month or so a pupae before the adults emerge.
-Courtenay Smithers
Australian Mustum

Answers to Quiz in
Nature Strips (page 19)

1. [3lue 2. Dolly the cloned Sheep
2. Severe Acure Respiratory)
S) midrome 4. Tim Fianner)'
3. Bied suano 6. Tivo Peoples Ba)'

WA 1. Scuer Rat, Norma)' Rat,
Laboratory' Rat or White Rat
8. The' weigh the same, but
register more when the scales are on
the carper. 9. Emperor Penguin
10. They's squirt them with water.

Pic Teaser
Do you recognise this? If you think you know what it is, then send your answer to Pic Teaser, Nature Australia Magazine. Please don't forget to include your name and address. The first correct entry will win a copy of Australia: the journey. Winter's Pic Teaser was a Thorny Devil (Moloch horridus).

Ideal for groups, overnight travellers and families.

Attractions and Facilities Include

- The only pair of breeding Masked Owls in captivity - A Wildlife Sanctuary for endangered mammals
- Spot lighting to observe native animals at night
- Over 8kms of graded onsite interpretive bushwalks
- Licenced restaurant and conference facilities
- Full range of accommodation styles.

Located at Point Lookout, off the Waterfall Way, via Armidale. NSW. Situated amongst World Heritage-Listed New England National Park and Cathedral Rocks National Park.
yaraandoo Phone: 0267759219 Fax: 0267759216
Email: enquiries@yaraandoo.com.au

booksofnature.com

옹․․ . BOOKS books@booksofnature.com
ph 0412865030 NTME
fax 0294158098

Shark nets in the spotight

How many' more sharks and other harmless animals must be killed before meshing is removed?

Shark nets off Syidney beaches are part of our culture. having given comfort to swimmers for over 65 years. However, it is a common misconception that shark nets physically prevent sharks from entering shallow waters. The nets, which are set on the bottom, do not reach the surface and are open at both ends. so sharks swim over and around them. Those that try to swim through them (from either direction!) become entangled and immobilised in the wide mesh, and 'drown': This is the only purpose of shark netsto reduce the population sizes of sharks and thus the threat to swimmers.
In July 2 2m 3 , the New South Wales Fisheries Scientific Committee (an independent group of scientists) released, for public comment, a proposed recommendation to list the current shark-meshing program in New South Wales waters as a key threatening process'. Today 49 beaches in greater Sydney, Wollongong, Newa astle and the central const. covering some 201 kilometres of coast, have nets set at least 1.3 days per month.

Mesh nets were first introduced off Sydney beaches in 19.37, when shark populations were abmormally large and shark attacks mumerous. The sharks were attracted to offal from the Homebush abattoirs, which was discharged through the sewage outfall at Malabar between 1916 and 1970. In the first 17 months of meshing, 1.500 sharks were killed. But the number of sharks killed each year has progressively declined due to falling populations. The 2001/2012 figure was just 69.

A combination of relatively late maturity and low reproductive rates means that sharks are unable to replace depleted numbers. Shark populations around the world have dramatically decreased due to various human activities. In Australia, seven shark species are listed as threatened. including the endangered Grey Nurse Shark and vulnerable Cireat White Shark, while two species of

> It is a common misconception that shark nets phesically prevent sharks from entering shallow waters.

woblegongs have declined in New South Wales. All four of these are killed in shark nets, as well as numerous other amimals (whales, dolphins, Dugongs. seals, turtles, rays, bony fishes).
There have been only three fatal shark attacks in New South Wales since 1970. the last in 1993. This is surprising, considering that Australia's population has increased by 50 per cent, Sydney's population has almost doubled, and the numbers of international tourists and water users have greatly increased. Clearly individual risks of shark attack are very low:
Nevertheless, New South Wales govermments of both major parties have failed to make pullic any review of the shark-meshing program. The press has
reported that the Premier has refised to remove shark nets off the New South Wales coasts, citing swimmer sifety: The move by the New South Walles Fisheries Scientific Commintee to put the shark-meshing issue out there for publice discussion is a step in the right direction.
Those people in favour of shark netting cite the lack of fatalitiess and serious shark attacks on Sydney's surf beaches since it begam, as justification for its continnation. However, such reasoming ignores the cessation of meshing for three years during World War 2 (that is, even without meshing, there were no fatalities). It also ignores the fact that over 1.300 kilometres of New South Wales coast are ummeshed. yet attack rates are miniscule.
Shark netting has not occurred during the winter months of flue and fuly since 198.3. and May and August were added as non-meshing months in 1989 with little public finfare. Meshing should now be stopped during September and Octoler, as there has never been a Sydney beach attack in these months since the first record in 1791 .
A detailed risk amalysis, starting with data for the three dangerous shark species (Bull, Tiger and (ireat White). must be conducted and made available to the public. If the results indicate protection is still warranted, alternate methods such as drum lines as used in Queensland need consideration.
In its attempt to guarantee the impos-sible-that is, freedom from shark attack or any other accident for every individual human that enters the water-the Govermment is paying a high envirommental price, and wethout public debate. How much time must pass, and how many more sharks and other harmesess amimals must be killed. before the meshing is gradually but steadily removed? \square

Dr fohn Paxton is a Rasearch Fellow in Ichthyologiy at the Ausirailan musfum. hayng. retirla) as Prinetpal Research Scienist in that secton mive yiaks A(i).

BY JOHN PAKTON

[^2]Save time
and money
by having
Nature
Australia
dellivered
to your
door!
In the
next issue...

- Blue Whales
- Crazy Ants
- Myth of Reptile

Domination

- Simpson Desert
- Blood-sucking

Spiders

- Bird Brains
- Creen-thighed Frogs

Summer issue on sale December 2003

Toll-free Subscription Hotline:
[1800] 028558
See reverse for details of hack issues

NEW SUBSCRIBER

SI(;NEI)
(.ARI)H()LI)ER'S NAME (I'rint) \qquad
\square Jick if you require a (iSI tux intuice. Cheque or card authority has to accompany order Make cheques payable
(1)
released in March. June. September and December Mease allow up to 12
weeks for delivery of first issue (unless backdited). Prices valid to Decem-
ber 2004 PHONE THROUGH CREDIT CARD ORDERS ON

GIFT SUBSERIPTION

I WOULD like to Share my facination
witil mature with someone else
D 3 years for $\$ 97.90$ (overseass $\$.4116$-surface, \$A 176-airmail)

- 2 years for $\$ 69.30$ (onerseas $\$.483$-surface, 5.4123 -airmail)
- 1 year for $\$ 36.30$ (overscas $\sqrt[3]{ } 4 \cdot 5.5$-surface, $\$ 16.5$-airmail) Prices are CSSI inclusive where applicable.
- Start this subscription with issue

To

My card number is
 Expary I ate

SI(;NEI)

\qquad (.ARI)Hf()LDER'S NAME (I'rint)

- lick if you require a Cisl lax munce

IlatureAustralia

Cheque or card authority has to accompany order Make cheques pavable to 'Australan Museum' Nature Australta is a quarter) magizme, with issues
released in March, June. September and Deceuber Mlease allow up to 12 released in March, June, September and December Please allow up to 12 Wect (H) PHONE THROUGH CREIDIT CARI) ORDERS ON T1800 028 558. SUBSCRIBE BY FAX 0293206073.

SEND THIS CARD AND PAYMENT POSTAGE FREE TO:

BACK ISSUES
Australian Museum
Reply Paid 66752
Darlinghurst NSW 2010
Australia

	IBSUE * COMTEMTS		Avarlable at $\$ 5.50$ earh (including postage E handing and (SST)					
SEND THIS CARD AND PAYMENT POSTAGE FREE TO:	25/1	- Wanderng Albatross - Righti Wrates - New Iree-kangaroo - Ichy Spiders		- Mud-dauber Wasps - Butcherbirds - Crocodites as Dinosaurs				
	25/4	- Wallabies - Suck-msects - Parroffish - Fros Dechine	26;12	- Crey Nurse Shark - Cassowary				
				- Box Jellyfish - Centipedes				
Reply Paid 66752				- Centupedes Bear Cuscus				
Darlinghurst NSW 2010 Australia	26/1	- Blossom-hats - Tusked Irogs - Warle Burds - Lyrebirds - Tornadoes	27/1	- Eclectus Parrots - Healing Honey				
				- Velver Worms - Desert Skinks				
	2613	- Corkroaches - Kakapo - Blue-tongue Lizards - New Holland Mouse	27/2	- Malleefou' - Dugongs - Greal Burroump Frogs - Hagishes				
	26/4	- Green and Colden Bell Irog - Possum Spotlightung - Jbis - Humans \& Ditrosaurs	$27 / 3$	- Hairy-nosed Wombats - Killer Whales - Scitiridi - Ancent Snakes - Mosses - Antechnmases				
	$26 / 5$	- Boobies - Velver Geckoes - Gtant Squids - Ice Ages - Earthuorms	$27 / 4$	- Leadbeater's Possums - Dogs and Humans - Humpbark Whales - Barn Owls - Jabinus				
	26,7	- Clossy Black Cockatoos - Aosquitoes - Brush-talted Rorkwallabies	2715	- Kookaburnas - Lungfish - Jumping Spiders - Sea Srakes - Lost Giants				
SEND THIS CARD AND PAYMENT POSTAGE FREE TO:	$26 / 8$	- Rock Rin etail Possum - Magpue cicese - Butterfly Matung - Origin of Lufe on Earth	27/6	- Brushtarl Possums - Beaked Whales - Fire Ants - Fairy-ivens - Minir Octopises				
Australian Museum Reply Paid 66752	26,9	- Siriped Possums - Cane Töads - Snake Permses - Shy Allaatross	$27 / 7$	- Ciradas - Purple-necked Rock-wallabies - Coorong Wetlands - Sauropod Dimosaurs - Ongins of Art				
Darlinghurst NSW 2010	26110	- Port Jarkson Shartes - Wedge-tailed Eagles						
Australia		- Humians in Australia - Marsupial Carmuores - Broun Tree Snakes	27/9	- Elephant Seals - Jacky Dragons - Curranoongs - Australian Tsunamn				
	26/11	- Crimson Rosellas - Marsupial Moles		- Tree Hollows				
	S2 Tiacles Ihrough lime - The Story of Humant Evolution-a look at our ongins ra $\$ 1094$ each (indudeng portage E handhne and CST)			- Denotes Limited stork				

BACK ISSUES/POSTERS/LIBRARY BOXES ORDER FORM

(2t)	Issue/Suppl No	Price \$
	TRACKS THROUGH TIME (as 10.94	
	2002 FLAT POSTER COLLECTION (a) 512.00 per set	
	111312 ARY IS)XES (a $81+24$ each	
	TOTAL \$	

Post to:
NATURE AUSTRALIA, AUSTRALIAK MUSEUM, REPIY PAID 66752, DARLINGHURST NSW 2010
(or phone $18000(085.58$ toll-free or fax (12 932() 6073)

Name

Signature

```
BAGX ISSUES AND SUPPLEMEENTS
```


$25 / 1$

$26 / 1$

27/1

2717

25/4

26/8

$27 / 2$

$26 / 1$

26/9

21/3

26/3

26/10

$21 / 4$

26/4

26/11

$21 / 5$

26/5

26/12

27/6

27/9

PURCHASE A BACK ISSUE OF
NATURE AUSTRALIA
FOR ONLY $\$ 5.50$

BBC

шeirdnature science is stranger than myth

An astonishing exploration of nature's strangest behaviour
\bullet Marvellous Motion •Fantastic Feeding•Devious Defences•Puzzling Partners •Bizarre Breeding •Peculiar Potions

[^0]: Newsletter／Journal；Monthly
 meeting，Bi－monthly meeting；
 Annual meeting／Conference；
 Weekly meetıng，Quarterly meetıng，Field outings／Tours；

 Conservation／Working programs；
 Discounted Goods；${ }^{\text {I }}$ Magazine；
 －Social／Education activities；
 Nature Australia magazine，
 Seminars

[^1]: - Mark Mc:Groutilier

 Ausirailan Musfum

[^2]: IIII L AST WORD IS AN IPINION PIECF:

 ANI) DOES NOI NE (ISTARILY EFHECT IG
 OF THII AUKTRAIIAN MUSEUM

