On a Collection of Carabidae from Timor Leste, with Descriptions of Nine New Species
(Insecta: Coleoptera, Carabidae)

MARTIN BAEHR¹ AND CHRIS A. M. REID²*

¹ Zoologische Staatssammlung, Münchhausenstr. 21, D-81247 München, Germany
² Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney NSW 2010, Australia

Martin.Baehr@zsm.mwn.de · Chris.Reid@austmus.gov.au

ABSTRACT. The ground beetle (Carabidae) fauna of Timor is reviewed based on recent collecting by the Australian Museum, in Timor Leste. 53 species were collected, of which the following nine species are described as new: Mecyclothorax timorensis sp. nov. Baehr; M. reidi sp. nov. Baehr; Rhytisternus externus sp. nov. Baehr; Arhytinus timorensis sp. nov. Baehr; Notagonum reidi sp. nov. Baehr; N. angusticolle sp. nov. Baehr; Perigona timorensis sp. nov. Baehr; Aristolebia timorensis sp. nov. Baehr; Lebia timorensis sp. nov. Baehr. The new species are compared with their nearest relatives. The remaining material is identified to species, or at least to genus, and discussed according to the current classification of Carabidae. Several species and genera are newly recorded for Timor. In spite of the rather small number of species contained, the sample allows some insight into the relations of the Carabid fauna of Timor to the Oriental and Australopapuan Regions, with about two thirds of the species belonging to the Oriental fauna, and one third to the Australopapuan fauna. A few species also belong to subgroups that are restricted to the southeasternmost Oriental Region “Wallacea”—Sulawesi, and the Maluku, Aru and Kei Islands.

KEYWORDS. Timor Leste; Coleoptera; Carabidae; taxonomy; new species; biogeography; Wallacea

In this review of Timorese Carabidae, the first author (MB) is responsible for all taxonomic decisions, including authorship of new species, and the second author (CAMR) is responsible for the introductory paragraphs. Both authors collaborated on the concluding biogeographical remarks.

Timor is a long narrow island, 475 km by c. 75 km, separated from both the Australian continental shelf and the remaining islands of the Indo-Malayan archipelago by narrow but deep trenches. Timor is the southernmost island of the biogeographic province of Wallacea. The island is relatively young, at most 4.5 MY (Nguyen et al., 2013). Like northwestern Australia, Timor has monsoonal rainfall and much of the island is dry for about half of the year. The dominance of limestone and porous soils in the landscape exaggerates this aridity. However, the island is being rapidly upthrust and its scattered massifs exceed 1500 m in several places, rising to 2920 m at Ramelau, near the geographic centre. The mountains have higher rainfall and their runoff produces high energy rivers in the monsoon. Timor has been inhabited by humans for at least 42,000
years (Kealy et al., 2015). Much of the landscape is seasonally irrigated, burned or maintained as pasture for horses. There is little natural forest left, with the notable exception of the Nino Konis Santana National Park, at the eastern tip of the island. The vegetation is mostly dry savanna woodland, dominated by eucalypts, fabaceous trees and Casuarina. There are numerous streams and rivers but few permanent still-water bodies.

The Australian Museum expeditions to Timor Leste took place in 2011 and 2012, with the purpose of surveying major insect and terrestrial mollusc groups. Each lasted approximately two weeks. The first trip was undertaken at the end of the dry season (early November 2011) and was a scoping survey, involving two Australian Museum staff, coleopterist Chris Reid and malacologist Frank Köhler, a research associate and malacologist Vince Kessner, and a field assistant, Zito Afranio. This party travelled around the territory, along the north coast from Dili to Los Palos, visiting Tutuala and Valu Sere at the eastern tip, then backtrack to Baucau, crossing the island south from there through Loihuno and Viqueque, then following the south coast road to Betano. From Betano the group drove north to Same, then Maubisse, then back to Dili, Kessner and Afranio stayed for an extra week to collect in the Bobonaro area, during which the monsoon broke. In general, collecting on this trip was brief and near the road. Collecting methods were handpicking, sweeping and beating and checking lights around buildings at night. The landscape was mostly extremely dry.

The second trip was undertaken at the end of the wet season (end of May 2012). This part of the Australian Museum expedition involved two teams. One group, lepidopterist David Britton, odonatologist Jacquie Recsei, Köhler, Reid and Afranio, collected in areas of western Timor Leste near Dili, Maubisse, Hatobuilico, Same, Betano, Laclubar and Manatuto. The other group, lepidopterists Andrew Mitchell and Research Associate Jean Weiner, dipterist Dan Bickel, Kessner and local assistant Agivedo Ribeiro, collected in eastern Timor Leste, around Tutuala, Maupetine and Laritame. Collecting on this second trip involved the use of light-, malaise-, yellow-pan traps and pitfalls. Despite limited time and wet weather, members of the expedition were able to ascend the highest mountain, the monsoon broke. In general, collecting on this trip was brief and near the road. Collecting methods were handpicking, sweeping and beating and checking lights around buildings at night. The landscape was mostly extremely dry.

Material and methods

Measurements were taken using a stereo microscope with an ocular micrometer. Body length was measured from apex of labrum to apex of elytra. Length of pronotum was measured from mid of apex to the most advanced part of base. Length of elytra was measured from the most advanced part of the humerus to the very apex.

In the taxonomic survey standard methods are used. For dissecting the genitalia, the specimens were relaxed overnight in a jar under moist atmosphere, then cleaned for a short while in 10% KOH. The habitus photographs were obtained by a digital camera using ProgRes CapturePro 2.6 and AutoMontage and subsequently were worked with Corel Photo Paint 14.

Most of the material, including all holotypes, is stored in the Australian Museum, Sydney (AMS), but a few paratypes are retained in the working collection (CBM) of the first author (MB) at Zoologische Staatssammlung, München (ZSBS).

Abbreviations

The following abbreviations have been used on labels: @ = at; b/light = black light; comm twr = communication tower; euc/s = eucalypt/s; E. uro = Eucalyptus urophylla (family Myrtaceae); gdns = gardens; h’way = highway; k = kilometres; ls = limestone; plantn = plantation; rf = rainforest; sum’t plat = summit plateau; telecom twr = telecommunication tower; t’off = turnoff; vacc = Vaccinium [family Ericaceae]; xing = crossing. “Site” numbers refer to collecting events by CAMR on the first expedition. TL code numbers refer to collecting events on the second expedition; K numbers are Australian Museum registration numbers (to be de-accessioned when in CBM). The arc-degree symbol is, on some labels, a colon.
Taxonomy
As it is not the task of this paper to discuss in length the justification and hierarchy of any suprageneric categories, the species are arranged in tribal sequence. More extensive discussions about the suprageneric classifications are presented only for the new species.

Carabinae
No carabine species were collected on the expeditions but one species has been recorded.

Calosoma timorense Chaudoir, 1869 (Timor): not collected.

Cicindelinae
No cicindeline carabids were seen on the expeditions but four species have previously been recorded:

Cicindela divina Horn, 1893 (Timor): not collected.

Cicindela ehlersi Horn, 1914 (Timor): not collected.

Cicindela timoriensis Jordan, 1894 (Timor): not collected.

Collyris viridula Chaudoir, 1865 (Timor): not collected.

Scaritinae
Tribe Clivinini
Only one species of the genus Clivina Latreille, 1802 (s. l.) has previously been recorded from Timor. The number of species could be considerably raised by appropriate sampling methods, because the Clivina faunas of neighbouring New Guinea and particularly that of northern Australia are very numerous in terms of species (Darlington, 1962; Baehr, 2008, 2015b).

Clivina bullata Andrews, 1927 (Timor): not collected.

Clivina fessa Darlington, 1962.—4 “gorge 1k NE Laclubar 8°44'47"S 125°54'54"E urophylla/vacc on ridge 1625m 31.v.2012 C. Reid TL2012/096/764 beating fallen branches” K402643 (AMS); and 1 “1k E Mt Acalara, Turiscai Rd 4.5k from h’way 8°49'45"S 125°37'40"E uro woodland/vacc on ridge 1625m 31.v.2012 C. Reid TL2012/096/764 beating fallen branches” K402644 (AMS). A widespread species that occurs through most of southern Asia to northern Australia.

Paratachys fasciatus (Motschulsky, 1851).—13 as follows: 12 “0.4k E Maupitine 8.47319S 127.14378E vine thicket TL2012/001/055 black light bucket trap 24.v.2012” K402648—650, K402652—660 (AMS); 1 “gorge 1k NE Laclubar 8°44'47"S 125°54'54"E uro/siamweed above gorge at mv light 1030m 3.vi.2012 C. Reid TL2012/107/598” K402651 (AMS). One of the most widespread species in Asia, New Guinea, and Australia. Previously recorded from Timor, as Tachys trechiformis (Jordan, 1894).

Paratachys orphninus (Andrewes 1925): 345 (Timor): not collected.

Polyderis sp. cf. subbrunneus Darlington, 1962.—1 “nr Desa Liurai, Hatubulco Rd, 2.5k W t’off highway 8°52'41"S 125°34'36"E uro phylla/vaccinum 24.v.2012 1885m C. Reid TL2012/079/517” K402647 (AMS). The identification is somewhat doubtful, but certainly the specimen is very similar to P. subbrunneus which occurs in New Guinea (Darlington, 1962).

Tachychy ceylanica (Nietner, 1858).—1 “Quelicai telcom twr, 3k E Tutuala 8°59'60"S 125°28'53"E, at mv light opposite field, field 490m 25.v.2012 C. Reid TL2012/082/540” K402694 (AMS). This beetle resembles an undescribed species from Sulawesi.

Tribe Bembidiini, subtribe Tachyina
A very large subtribe distributed worldwide. Species of various genera are common throughout the Oriental and Australopapuan Regions, though most genera are in need of revision, at least in some areas, and the validity of several genera is debatable. Most named species are widespread in the Oriental Region. Most tachyine species live beside water on the banks of rivers, shores of lakes, lagoons, and ponds, some also on beaches.

Elaphropus haliploides (Bates, 1892).—3 as follows: 1 “Kablaki Hotel, Same, 8°59'60"S 125°28'53"E, at mv light opposite field, field 490m 25.v.2012 C. Reid TL2012/082/540” K402694 (AMS). This beetle resembles an undescribed species from Sulawesi.

Tachyura triloris (Andrewes, 1925): 431 (Timor): not collected.
Tribe Moriomorphini, subtribe Mecyclothoracina

Moriomorphini is one of the largest tribes of subfamily Psydrinae, a polyphyletic group in the traditional sense which has been split up (Baehr, 1999; Bouchard et al., 2011; Liebherr 2011b). Moriomorphini is a diverse group of carabid beetles in terms of morphology and ecology. These beetles live in leaf litter on the ground in lowland and montane forest and on or under bark of various trees in forest, woodland, and even fairly dry country (Baehr, 2003a, 2005, 2007), but also in moss and other epiphytes in rain forest. With respect to subgroups and to morphology, Moriomorphini and other psydrine Carabidae are most diverse in Australia (Moore, 1963; Moore et al., 1987; Baehr, 1999) and many groups are distributed in cool or even cold temperate habitats in Australia, New Zealand, southern South America, and on a number of subantarctic islands. Some groups, however, have invaded tropical, usually montane, regions, for example in North Queensland, New Guinea, and some Pacific islands, where they have undergone remarkable taxonomic radiations (Baehr, 1995a, 1999, 2003a, 2005; Liebherr, 2006, 2008, 2009, 2011a, 2013, 2015; Liebherr & Marris 2008; Moore, 1984; Moore et al., 1987; Perrault, 1978, 1992). Very few species occur in Africa, the southern Oriental Region and the Holarctic Region.

Mecyclothorax Sharp, 1903

Mecyclothorax is the largest genus of the subtribe Mecyclothoracina and is widely distributed in the Australian-Pacific area including Australia, New Guinea, New Caledonia, New Zealand, Society Islands (mainly Tahiti), and Hawaiian Islands, but a few species also are known from Java (Louwerens, 1959) and one even from Mt. Kinabalu in northern Borneo (Baehr & Lorenz, 1999). In terms of species, the Society and Hawaiian Islands are most prolific, which is due to enormous, comparatively recent, taxonomic radiations on both volcanic island groups (Liebherr, 2006, 2008, 2009, 2011b, 2013, 2015; Perrault, 1978, 1992). No species have previously been recorded from Timor.

The specimens of Mecyclothorax from Timor were sampled on a single high altitude massif in the western part of Timor Leste by means of pitfall traps and shaking grass tufts over a sheet, in open eucalypt woodland. All specimens were collected above 1800 m.

Mecyclothorax timorensis sp. nov. Baehr

Figs 1, 11, 18

Etymology. The name refers to the occurrence of this species on the island of Timor.

Diagnosis. Small, unicoloured dark species with short, oval-shaped elytra and wide, cordiform, slightly excised near the base, pronotum. Elytra with two, in some specimens unilaterally three, setiferous punctures. Aedeagus with compressed, remarkably securiform, apex. From M. reidi sp. nov. distinguished by fewer elytral setae and the shape of the apex of the aedeagus.

Description. Measurements. Length: 4.3–4.9 mm; width: 1.27–1.34 mm; ratios: width/length of pronotum: 1.18–1.23; width base/apex of pronotum: 0.96–1.02; width pronotum/head: 1.36–1.45; length/width of elytra: 1.39–1.43; width elytra/pronotum: 1.53–1.58.

Figure 1. Mecyclothorax timorensis sp. nov. (body length 4.5 mm).

Colour (Fig. 1). Unicolourous very dark piceous to black, the lateral margin of the elytra barely paler. Labrum and mandibles reddish-brown, palpi yellow, 1st–3rd antennomeres and legs pale red, rest of antenna darker, more or less dark piceous. Lower surface more or less piceous, elytral epipleurae pale reddish.

Head (Fig. 1). Rather narrow in relation to prothorax. Eye moderately large, slightly convex, laterad little protruded, orbit fairly large, oblique-convex, c. 1/3 of length of eye. Frontal furrows deep, elongate, oblique, attaining about the middle of the eye, laterally bordered by a narrow ridge. Parafrontal sulcus almost encircling the eye. Frons convex, usually without a median pit. Clypeal suture well impressed. Labrum transverse, truncate, 6-setose. Mandibles moderately elongate, apically suddenly curved. Mentum with distinct, apically rounded tooth. Submentum with very elongate setae. Posterior supraorbital seta situated at about posterior margin of eye but slightly removed medioiad. Antenna short, barely attaining the basal angle of the pronotum, median antennomeres little longer than wide. Surface impunctate, with faint, irregular transverse striales, with very faint, superficial, about isodiametric microreticulation, glossy.

Pronotum (Fig. 1). Moderately large, fairly wide but somewhat variable, considerably wider than long, disk fairly convex; lateral margin evenly convex, with a faint excision in front of the basal angle, greatest width slightly in front of middle. Base moderately wide, about as wide as the apex. Apex straight, apical angle slightly projected but rounded. Base slightly convex. Basal angle distinct, about rectangular but slightly differently shaped. Marginal channel narrow, barely widened towards angle. Both apex and base not marginated. Anterior transverse sulcus shallow, barely impressed, v-shaped, posterior transverse sulcus deep. Median line well impressed, anteriorly and posteriorly abbreviated. Basal groove short, irregularly circular, fairly deep. Basal area coarsely punctate-corrugate. Anterior marginal seta situated slightly in front of middle, in the marginal channel, posterior marginal seta situated at basal angle. Surface impunctate, on disk with only traces of extremely superficial, slightly transverse microreticulation, lateral parts and basal area more distinctly microreticulate, surface glossy.

Elytra (Fig. 1). Moderately short and wide, dorsally convex, not widened apically, widest diameter at about middle. Humerus obtusely rounded, lateral margin evenly convex. Humerus obtusely rounded, lateral margin evenly convex, not widened apicad, widest diameter about at middle. Convex, almost attaining the basal angle of the pronotum, median antennomeres little longer than wide. Surface impunctate, with faint, irregular transverse striales, with very faint, superficial, about isodiametric microreticulation, glossy.

Pronotum (Fig. 1). Moderately large, fairly wide but somewhat variable, considerably wider than long, disk fairly convex; lateral margin evenly convex, with a faint excision in front of the basal angle, greatest width slightly in front of middle. Base moderately wide, about as wide as the apex. Apex straight, apical angle slightly projected but rounded. Base slightly convex. Basal angle distinct, about rectangular but slightly differently shaped. Marginal channel narrow, barely widened towards angle. Both apex and base not marginated. Anterior transverse sulcus shallow, barely impressed, v-shaped, posterior transverse sulcus deep. Median line well impressed, anteriorly and posteriorly abbreviated. Basal groove short, irregularly circular, fairly deep. Basal area coarsely punctate-corrugate. Anterior marginal seta situated slightly in front of middle, in the marginal channel, posterior marginal seta situated at basal angle. Surface impunctate, on disk with only traces of extremely superficial, slightly transverse microreticulation, lateral parts and basal area more distinctly microreticulate, surface glossy.

Elytra (Fig. 1). Moderately short and wide, dorsally convex, not widened apically, widest diameter at about middle. Humerus obtusely rounded, lateral margin evenly convex. Humerus obtusely rounded, lateral margin evenly convex, not widened apicad, widest diameter about at middle. Convex, almost attaining the basal angle of the pronotum, median antennomeres little longer than wide. Surface impunctate, with faint, irregular transverse striales, with very faint, superficial, about isodiametric microreticulation, glossy.

Diagnosis. Small, unicolourous dark species with short, oval-shaped elytra and wide, cordiform, near base slightly excised pronotum. Elytra with four setiferous punctures. Aedeagus

Variation. Some variation is noted in size and relative width of the pronotum, also in distinctness of the lateral elytral striae, and in distinctness of the microreticulation on head, pronotum, and elytra.

Distribution. Western part of Timor Leste, in a restricted montane area, on the highest mountain in Timor (Ramelau) and associated ridges.

Collecting circumstances. Collected on the ground in open eucalypt woodland with grass and Vaccinium, between 1850 and 2750 m altitude.
with compressed, not securniform apex. From *M. timorensis*
distinguished by the larger number of elytral setae and the
shape of the apex of the aedeagus.

Description. Measurements. Length: 4.4–4.7 mm; width:
1.20–1.33 mm; ratios: width/length of pronotum: 1.21–1.28;
width base/apex of pronotum: 1.0–1.04; width pronotum/
head: 1.43–1.48; length/width of elytra: 1.40–1.45; width
elytra/pronotum: 1.46–1.53.

Colour (Fig. 2). Unicolourous very dark piceous to
black, the lateral margin of the elytra barely paler. Labrum
and mandibles reddish-brown, palpi yellow, 1st–3rd
antennomeres and legs pale red, rest of antenna darker, more
or less dark piceous. Lower surface more or less piceous,
elytral epipleurae pale reddish.

Head (Fig. 2). Rather narrow in relation to prothorax. Eye
moderately large, slightly convex, laterad little protruded,
orbit fairly large, oblique-convex, c. 1/3 of length of eye.
Frontal furrows deep, elongate, oblique, attaining about the
middle of the eye, laterally bordered by a narrow ridge.
Parafacial sulcus almost encircling the eye. Frons convex,
usually without a median pit. Clypeal suture well impressed.
Labrum transverse, truncate, 6-setose. Mandibles moderately
elongate, apically suddenly curved. Mentum with distinct,
apically rounded tooth. Submentum with very elongate
setae. Posterior supraorbital seta situated about at posterior
margin of eye but slightly removed mediad. Antenna short,
just surpassing the basal angle of the pronotum, median
antennomeres slightly longer than wide. Surface impunctate,
with faint, irregular transverse striales, with very faint,
superficial, about isodimetric microreticulation, glossy.

Pronotum (Fig. 2). Moderately large, fairly wide but
somewhat variable, considerably wider than long, disk fairly
convex; lateral margin evenly convex, with a faint excision
in front of the basal angle. Widest diameter slightly in front
of middle. Base moderately wide, about as wide as the apex.
Axp straight, apical angle slightly projected but rounded.
Base slightly convex. Basal angle distinct, about rectangular.
Marginal channel narrow, barely widened towards angle.
Both, apex and base not margined. Anterior transverse sulcus
shallow, little impressed, v-shaped, posterior transverse
sulcus deep. Median line well impressed, anteriorly and
posteriorly abbreviated. Basal groove short, irregularly
regular, fairly deep. Basal area coarsely punctate-corrugate.
Anterior marginal seta situated slightly in front of middle,
in the marginal channel, posterior marginal seta situated at
basal angle. Surface impunctate, on disk with only traces of
extremely superficial, slightly transverse microreticulation,
lateral parts and basal area more distinctly microreticulate,
surface glossy.

Elytra (Fig. 2). Moderately short and wide, dorsally
convex, not widened apicad, widest diameter about at middle.
Humerus obtusely rounded, lateral margin evenly convex.
Basal margin distinct, oblique, slightly sinuate, connected
to scutellary striae. Five or even six median striae well
impressed and very coarsely punctate, slightly abbreviated
at base, lateral striae less distinct; three median striae
almost attaining the apex, the external striae increasing
abbreviated in front of apex. Five median intervals in basal
half distinctly convex. Scutellary stria short, deep, situated
mediad of the outturned sutured stria. Marginal channel
narrow. 3rd interval with four setiferous punctures attached
to the 3rd stria, the anterior puncture situated in basal third,
the 2nd puncture about at middle, the 3rd puncture slightly
behind middle, and the 4th puncture near the posterior third
of the elytra. Punctures distinct, setae extremely short. Near
apex with a single setiferous puncture at the end of the 3rd
stria. Marginal punctures moderately conspicuous, 15–16 in
a row that is slightly interrupted in middle, marginal setae
elongate if not broken. Intervals impunctate, with faint, more
or less superficial microreticulation consisting of transverse
meshes. Surface fairly glossy, not iridescent. Metathoracic
wings absent.

Lower surface. Largely impunctate. Metepisternum
slightly longer than wide. Sternal VII in male bisetose, in
female quadrisetose.

Legs. Without striking features. Three basal
tarsomeres of male anterior tarsus expanded and biseriately squamose.

Male genitalia (Fig. 12). In shape and structure quite
similar to those of *M. timorensis* Genital ring slightly
wider, asymmetric, with narrow base and wide, oblique
apex. Aedeagus of same size and general shape, but apex
on upper surface only obtusely raised, and the denticle at
apex of orificium extremely small or even absent. Orificium
and internal sac quite similar. Left paramere slightly shorter
and more compact, bisetose at apex, without setae at lower
margin. Right paramere also considerably more compact,
with a not sclerotized narrow rim along upper border,
bisetose at apex and with about 11–12 elongate setae at
lower margin.

Female gonocoxites. Similar to those of *M. timorensis*
sp. nov.

Variation. Little variation noted.

Figure 2. Mecyclothorax reidi sp. nov. (body length 4.7 mm).
Distribution. Western part of Timor Leste, on the highest mountain in Timor (Ramelau) and associated ridges.

Collecting circumstances. Collected on the ground in open eucalypt woodland with grass and Vaccinium, between 2050 and 2550 m altitude.

Remarks. The two new species described in the present paper are the first records of the genus Mecyclothorax from the island of Timor. They partly fill the distribution gap of the genus between northern Australia and New Guinea in the south-east, and Java and Borneo in the north-west.

Apparently both species are closely related, because body shape, structure of the surface, and shape and structure of the aedeagus are very similar. They differ only in the number of tactile elytral setae and in the shape of the apex of the aedeagus. According to the shape of the aedeagus, particularly of the apex, both species seem to belong to the ambiguus-group of species which is widely distributed in southern and eastern Australia and in New Guinea. The aedeagus of M. timorensis is particularly similar to that of M. rotundicollis (White, 1846) from New Zealand. However, body shape, size of the antenna, and surface structure of both species from Timor differ from those of the ambiguus-lineage.

Apparently the species from Timor do not have closely related species in New Guinea, as far as the macclothoracine fauna of this island is known, whereas the Oriental species, particularly those from Java, have not been studied recently, so that the structure of their male genitalia is not known in detail. Therefore, the relationships of the species from Timor to species from Java are uncertain.

Because the genus Mecyclothorax certainly has originated in Australia, where, in terms of their phylogenetic status, the apparently most plesiotypic species occur, even the few Oriental species are an Australian faunal element. Thus far, the species are only known from a restricted area in the western part of Timor Leste where they have been sampled in montane areas above 1800 m. At some localities both species have been collected together. Sampling records suggest that both species are ground living and occur in open eucalypt woodland with Vaccinium, grass, and moss, where they have been mostly collected from tufts of grass or in pitfall traps. This is also the plesiotypic habitat in Hawaii (Liebherr, 2015).

Harpalinae

Tribe Pterostichini

A very large tribe, the limits of which are still under review. Commonly the tribe, as used in this paper, is subdivided, and some groups such as Cratacerini and Morionini are given the rank of separate tribes.

Caelostomus sp. —1 ex. “Loi Huno 8.77836S 126.37078E pasture/vine thicket 280m TL2012/008/044 black light trap @ hotel 29.v.2012” K40267 K402683 (AMS). This large genus is urgently in need of being revised. It is very numerous in the Oriental Region and occurs also on New Guinea and in Australia. Apparently the single specimen is different from all Australian species and the New Guinea species enumerated in Darlington (1962).

Morion gracilis Jordan, 1894 (Timor): not collected.

Morion cf. simulatum Jordan, 1894. —1 ex. “S slope Kablaki NW Same 8°57'44"S 125°36'40"E weedy gdns/coffee/rf trees 970−1020m 26.v.2012 C. Reid TL2012/086/544 K402683 (AMS). The specimen is tentatively referred to the Timorese species M. simulatum (Jordan, 1894). Because species of Morion are difficult to distinguish and no specimen for comparison was available, the identification is preliminary.

Prosopogmus sp. —7 ex. “c3k W Maubara 8:37'14"S 125:10'45"E at light, clearing in closed forest 60m 20.xi.2011 V. Kessner, Z. Afranio TL145/11” K402669 (AMS); “5.8k NE Hato Buliko 8:52'53.8"S 125:34'02.7"E leaf litter, euc woodland 2050 m 1.xii.2011 V. Kessner, Z. Afranio TL188/11” K404670 (AMS); “nr Desa Liurai, Hatubuliko rd, 2.5k W t’off highway 8°52'41"S 125°34'36"E Euc. urophylla/grass/vacc woodland 24−28.v.2012 1850m J.Recsei TL2012/079/511 [pitfall traps]” K402671−673 (AMS); “c8k NE Maubisse 8:49'22"S 125°37'02"E Euc. urophylla & Melastoma woodland 1610m 16.xi.2011 C. Reid Site 46” K404638 (AMS). This predominantly Australian genus urgently needs revision. Besides a few species described from New Guinea, a number of undescribed species are known to occur on that island. The specimens from Timor are undeterminable at present.

Rhytisternus Chaudoir, 1865

Diagnosis. Medium-sized to rather large species (in Pterostichini), characterized by bifid mental tooth, transversely striolate proepipleura, absence of the scutellary stria but presence of the scutellary pore on the elytra, usually incomplete striation of the elytra, absence of discal punctures and setae on the 3rd interval, and not transversely sulcate abdominal sternum. The latter character distinguishes the genus from the New Guinean genus Rhytiferonia Darlington, 1962, that likewise possesses transversely striolate proepipleura.

The genus Rhytisternus presently includes 24 described species that are distributed throughout the whole of Australia, but have not been recorded elsewhere (Moore et al., 1985, Lorenz, 2005). The genus has not been recently revised, therefore the actual number of species may be considerably larger. Several species of Rhytisternus occur in the Northern Territory of Australia opposite the island of Timor. The genus is characterized by presence of several transverse striae on the proepistemum, a character that is similarly present only in the New Guinean genus Rhytiferonia Darlington, 1962 which, however, probably is not very closely related to Rhytisternus Chaudoir (Darlington, 1962) (see discussion below).

In Australia, most species of Rhytisternus have been sampled near water, at river banks and at or near the shores of lakes and lagoons, preferably if these are grown with some vegetation. The single species described in the present paper was collected in dwarf Eucalyptus woodland with grass and moss at high altitudes.
Rhytisternus externus sp. nov. Baehr

Figs 3, 13, 19

Etymology. The name refers to the occurrence of this species outside Australia.

Diagnosis. Moderately large species (in genus), distinguished from the Australian species by the narrow, elongate, slightly ovoid, and dorsally convex elytra, and by the reduction of the posterior wings, also from most species by the complete striation of the elytra.

Description. Measurements. Body length: 10.8–12.1 mm; width: 3.65–4.1 mm. Ratios. Width/length of pronotum: 1.16–1.25; width of widest diameter/base of pronotum: 1.29–1.35; width base/apex of pronotum: 0.96–1.0; length/width of elytra: 1.76–1.83.

Colour (Fig. 3). Dark piceous to black, in some specimens scutellum and suture inconspicuously reddish-brown. Labrum and mandibles dark red, palpi and antenna red, apical antennomeres slightly paler. Legs dark red, femora in parts darker. Lower surface very dark piceous to black, but epipleurae of prothorax and of elytra, and the apical margin of the terminal abdominal sternum dark red.

Head (Fig. 3). Narrower than pronotum, dorsally slightly convex. Eye moderately large, laterally little projected, orbit elongate, oblique, more than half as long as the eye. Labrum slightly excised at apex. Mandibles of normal size and shape, near apex incurved. Mentum with a bifid mental tooth, with two elongate setae; submentum also with two very elongate setae. Labium apically widened, bisetose. Palpi of normal size and shape, impilose. Antenna rather short, median antennomeres c. 1.5 × as long as wide, antenna pilose from 4th antennomere. Frontal furrows deep, linear, sinuate, attaining level of anterior third of the eye, ending abruptly. Frons slightly convex, neck with a weak neck constriction. The posterior supraorbital seta inserted slightly posteriad of the eye. Surface with dense but very punctures and only very superficial traces of very fine, about isodiametric microreticulation.

Pronotum (Fig. 3). Slightly wider than long, somewhat cordiform, base as wide as, or slightly in front of middle. Apex barely excised, apical angle very slightly projected, but widely rounded. Lateral border evenly convex to base, without any perceptible prebasal sinuation. Base laterally slightly oblique. Basal angle obtusely angulate, c. 110°. Lateral margin narrow throughout. Both, apex and base not margined. Median line deeply impressed, not attaining the apex, but almost attaining the base. Both transverse impressions wide and shallow. Basal grooves deep, linear, almost straight, extended to the basal third of the pronotum. The anterior lateral seta inserted slightly behind the apical fourth of the pronotum, the posterior seta located on the basal angle. Disk in middle with short, extremely superficial transverse striales, with extremely fine, barely perceptible punctures, and very fine, though distinct, isodiametric microreticulation. Surface but moderately glossy.

Elytra (Fig. 3). Narrow and elongate, somewhat ovoid, widened posteriad, widest about at apical third. Dorsal surface moderately convex. Humeral area comparatively narrow, lateral margin in basal half straight but oblique, in apical half evenly convex, but deeply sinuate where the epipleura is crossing the margin. Humerus obtuse or obtusely convex. Apical part convex and slightly incurved towards the suture. All striae distinct and complete, well impressed from base to apex, barely crenulate; intervals distinctly raised, slightly convex. Scutellary striae absent, scutellary puncture and seta present, situated at base of 2nd stria. 3rd interval impunctate. Marginal series composed of 15 punctures which are widely interrupted in middle. At apex of 7th and of 2nd stria with an additional puncture and seta. Intervals impunctate, with very fine though distinct, isodiametric microreticulation; surface but moderately glossy. Metathoracic wings short.

Figure 3. Rhytisternus externus sp. nov. (body length 10.8 mm).

Legs. Of normal size and shape. 5th tarsomeres with 2–3 elongate setae on either side of the lower surface, 1st–3rd tarsomeres of male protarsus biseriately squamose underneath.

Male genitalia (Fig.13). Genital ring convex, with asymmetric, oblique-convex apex. Aedeagus strongly sclerotized, rather narrow and elongate, about straight, lower surface very concave. Apical part depressed, asymmetric, subapically on the right side deeply concave, at tip irregularly oblique. In apical fifth on the left side dorsally with a denticle that is directed upwards and posteriarc, also near the very apex the upper surface on the left side slightly raised. Orificium elongate, situated on the upper surface but slightly moved right. Internal sac without any sclerotized parts, very simply folded. Left paramere short and wide, about quadrangular, at apex almost perpendicular, but at bottom of apex with a short, little sclerotized protuberance. Right paramere narrow, somewhat axe-shaped, with elongate, regularly narrowed apex.

Female gonocoxites (Fig. 19). Gonocoxite 1 elongate, without setae at the apical rim of the ventral surface; gonocoxite 2 curved, with obtusely angulate apex, with one elongate dorso-median ensiform seta below middle, four elongate, rather stout ventro-lateral ensiform setae in the basal half, and two fairly elongate, preapical nematiform setae originating from a large pit. Lateral plate mediad at apex with a few rather stout setae.

Variation. No significant variation noted.

Distribution. Western part of Timor Leste, where it is confined to the highest Timorese mountain (Ramelau) and associated ridges.

Collecting circumstances. Sampled at high altitudes (1850–2750 m) in stunted or tall eucalypt woodland with Vaccinium, grass and moss.

Relationships. The new species is tentatively attributed to the Australian genus Rhytisternus due to several diagnostic characters, for example, the transverse striolation of the proepisternum, absence of the scutellary stria and of the discal punctures on the elytra, and absence of transverse sulci on the abdominal sternum. Also the male genitalia, aedeagus, parameres, and genital ring, in shape and structure are very similar to those of some Australian species that have been dissected for comparison. However, in body shape, the complete striation of the elytra, and the reduction of the metathoracic wings the species deviates from all described Australian species. Because the genus Rhytisternus has not been revised in recent times, the relationships of the new species from Timor with those from Australia presently remain somewhat doubtful.

Remarks. The discovery in Timor of a new species of the Australian genus Rhytisternus, or at least of a species closely related to that genus, is not too surprising and corroborates the close relationship of the Carabid fauna of Timor to that of northern Australia. It is already known that species of otherwise Australian carabid genera occur outside that continent on New Guinea or on islands in the southern part of the Indonesian Archipelago, for example, on Sulawesi, the southern Lesser Sunda Islands, the Moluccas, Aru, Kei, and Tenimber Islands.

However, the habits of the new species are quite different from those of the Australian species of Rhytisternus, as far as they have been recorded, because the species from Timor, in contrast to all Australian species, apparently is not decidedly hygrophilous. On the contrary, it has been sampled not only at high altitude, but, even more important, in open eucalypt woodland with grass, and not in the vicinity of open water or of wetlands. The montane habits may have caused the reduction of the flying ability, because wing reduction is very common in montane species, for example, in the New Guinean species of Rhytiferonia (Darlington, 1962; Baehr, 2001b).

Darlington (1962) discussed the possible relationship of the New Guinean genus Rhytiferonia with the Australian Rhytisternus, but denied any close relationships due to the quite different body shape, presence of a transverse sulcus on the abdominal sternum in Rhytiferonia, and absence of the scutellar puncture and seta in the New Guinean genus. Presence, or absence, of transversely sulcate abdominal sterna is usually considered phylogenetically important, which per se would render close relationship unlikely. But also body shape and habits of the species of Rhytiferonia are quite different from those of all species of Rhytisternus, because the New Guinean species are bulky, possess reduced wings and no flying ability, and inhabit open woodland and subalpine meadows at high to very high altitude.

The new species from Timor, although agreeing in almost all constitutive character states with Rhytisternus, in its montane habits and the loss of flying ability agrees with the New Guinean species of Rhytiferonia. Therefore, it may be another, independent descendent from a common origin which is apomorphous, as compared with the species of Rhytisternus, in its montane way of life and its loss of ability for flight. There are not enough differences to exclude it from Rhytisternus.

Tribe Platynini

A very large tribe with numerous genera worldwide. Unfortunately, the Oriental and Papuan Platynini urgently need revision at generic level, to provide systematic and taxonomic agreement between both faunas. Several of the large genera, in the course of such revisions, may be subdivided, other genera may be united. Some also seem to be genera of convenience that are based on plesiomorphic character states, and these should be critically revised, divided, or united with other genera. To conclude, the supraspecific systematics of the Oriental-Papuan Platynine fauna presently is a mess.

The number of Platynine species in the Oriental Region and in New Guinea is immense. Whereas the New Guinean fauna is reasonably well recorded, mainly due to the famous work of Darlington (1952), with several additions by Baehr (1992; 1995b; 2000; 2001a; 2001b; 2008b; 2010a; 2010b; 2010c; 2012b), in the Oriental Region the situation is extremely complex and the number of undescribed species is likely to be huge.

In the present paper, genera are used according to their present status, but, for example, Altagonum Darlington,
1952, Colpodes Macleay, 1825, and Notagonum Darlington, 1952, need re-definition.

Altagonum sp.—1 ex. “Mt Laritame 8.69178S 126.38719E water tank, edge moss forest, 1150m TL2012/011/030 yellow pans 30.v.2012” K402601 (AMS). The single specimen is placed with some doubt in the mostly New Guinean genus *Altagonum* Darlington, 1952. However, this is a genus of convenience that, in the course of a revision, may be divided into two or more genera. Many undescribed species are known to occur in New Guinea, a few species also occur on Sulawesi and the Moluccas. The specimen from Timor presently is undeterminable.

Arhytinus Bates, 1889

Diagnosis. Medium-sized to very small species (in tribe), characterized by short and wide body shape; absence of the mental tooth; cordiform prothorax; short and wide, oval-shaped and posteriad widened elytra with well impressed and commonly distinctly punctate or crenulate striae and usually rather iridescent surface due to superficial microreticulation of very fine, transverse lines. Commonly the 3rd interval is asetose, rarely unisetose. Even when the external characters are remarkably similar throughout the genus, the male aedeagus is quite differently shaped and structured and may or may not bear a bidenticulate apex, and commonly it bears one or several strongly scerotized teeth, or spines, or spinose plates, of different size and shape in the apical part of the (inverted) internal sac.

The genus *Arhytinus* presently includes 50 described species that are distributed from southern India through Nepal, Burma, Thailand, Vietnam, southern and central China, Taiwan, the Philippine and Indonesian Archipelagos, including Sulawesi and the Moluccas, to New Guinea and surrounding Islands of the Bismarck Archipelago, but it is not yet known from Australia. The genus has been recently revised (Baehr, 2010a), but since the revision several additional species have been described from various countries (Baehr & Schmidt, 2010; Baehr, 2012a, 2014a,b).

Apart from very few species, specimens of *Arhytinus* are extremely rare in collections, and of many species only the holotype is known, or the species are only recorded from a single locality. The reasons for this apparent rarity are unknown, although they may be rather due to inadequate sampling methods and efforts than to the rarity of specimens in nature. Similarly, of the new species described here, only the holotype is available.

The single species described in the present paper was collected at light in eucalypt forest with weeds near a gorge, at median altitude.

Arhytinus timorensis sp. nov. Baehr

Figs 4, 20

Holotype ♂, “TIMOR LESTE gorge 1k NE Laclubar 8°44′47″S 125°54′54″E E. uto/siamweed above gorge, at mv light 1030m 3.vi.2012 C. Reid TL2012/107/598” K402689 (AMS).

Eymology. The name refers to the occurrence of this species on the island of Timor.

Diagnosis. Moderately large species (in genus), distinguished from all species recorded from adjacent areas (eastern Java, Bali, Sulawesi, Moluccas, New Guinea) and of similar body size, except *A. brendelli* Baehr & Schmidt, 2010 from Sulawesi, by decidedly shorter and wider elytra. From the latter species distinguished by slightly larger body size and considerably narrower pronotum with narrower base.

Description. Measurements. Body length: 5.5 mm; width: 2.65 mm. Ratios. Width/length of pronotum: 1.52; width of widest diameter/base of pronotum: 1.24; width base/apex of pronotum: 1.06; width pronotum/head: 1.31; length/width of elytra: 1.32.

Colour (Fig. 4). Black, dorsal surface rather iridescent. Lateral margins of pronotum and elytra indistinctly and very narrowly dark red. Labrum and mandibles dark red, palpi and antenna pale red, though 2nd and 3rd antennomeres slightly darker. Femora bright yellow, tibiae and tarsi slightly darker.

Head (Fig. 4). Comparatively large. Eye large, laterally well projected but not semicircular, orbit short, oblique. Frontal furrows shallow, irregularly circular, developed only immediately behind clypeal suture. Antenna moderately elongate, just slightly surpassing the base of the pronotum, 6th antennomere c. 1.5 × as long as wide. Surface with fine, very slightly superficial, isodiametric microreticulation which is weaker towards the neck, rather glossy and iridescent.

Pronotum (Fig. 4). Rather wide, widest slightly in front of middle, dorsal surface rather depressed. Apex fairly deeply excised, apical angles project but widely rounded. Lateral border evenly convex to close to base, immediately near the basal angle very faintly sinuate. Base rather wide in comparison with diameter, slightly convex. Basal angles obtusely dentate, laterally very faintly projected, c. 120°. Lateral margin anteriorly narrow, in basal fourth widened and deplanate. Apex finely margined, base in middle not margined. Median line shallow but distinct, not attaining apex and base. Both transverse impressions very shallow. Basal grooves wide, shallow. Anterior lateral seta inserted at apical third, slightly in front of widest diameter, and slightly removed from margin. Posterior lateral seta inserted slightly in front of the basal angle. Posterior third of lateral margin and base behind the posterior transverse sulcus with coarse, moderately dense, irregularly spaced punctures. Surface with extremely fine and rather superficial, very transverse microreticulation which is composed of dense transverse meshes and lines, surface glossy and distinctly iridescent.

Elytra. Of average shape, comparatively short and wide, slightly oviform, dorsal surface moderately convex and slightly depressed on disk. Humeral area comparatively wide, lateral margins in basal half but very slightly convex, then evenly convex. Striae deeply impressed, barely crenulate, intervals distinctly raised, convex throughout. 3rd interval impunctate. Only extremely fine and extremely superficial
traces of microreticulation recognizable at very high magnification, composed of finest transverse lines. Surface very glossy, with distinct iridescent lustre.

Lower surface. Prosternal process apparently without seta at apex. Proepisternum with very fine, rather superficial though distinct microreticulation that consists of very transverse meshes, rest of lower surface without perceptible microreticulation. Middle of terminal sternum with very short, erect pilosity. Metepisternum fairly elongate, c. 1.5 times longer than wide at anterior margin. Terminal sternum in female quadrisetose.

Male genitalia. Unknown.

Female gonocoxites (Fig. 20). Gonocoxite 1 short and stout, with 5–6 stout, at apex acute ensiform setae at the apical rim of the ventral surface; gonocoxite 2 curved, with rather acute apex, with one short dorso-median ensiform seta at middle, three elongate, stout ventro-lateral ensiform setae, and a single short preapical nematiform seta originating from a pit. Lateral plate with several small setae at the apical margin.

Variation. Unknown.

Distribution. Western part of Timor Leste. Recorded only from the type locality.

Collecting circumstances. Sampled at light in tall Eucalyptus woodland with siamweed, near a gorge, at median altitude.

Relationships. Without knowledge of the male genitalia, relationships in the genus Arhytinus are difficult to determine, because of the high grade of similarity in body shape and surface structure in most species. However, in view of body size, overall shape, and length of elytra, the most similar species recorded from surrounding areas seems to be A. brendelli Baehr & Schmidt, 2010 from Sulawesi.

Remarks. The new species represents the first record of the genus Arhytinus from Timor. However, as explained in the introduction, specimens of Arhytinus are so rarely and sporadically sampled that it would be premature to speculate about presence, or absence, of the genus in areas, or on islands, from where it was not yet recorded. Hence, certainly the new species fills a gap in the genus’ range, but this is not too surprising.

Although the holotype of the new species is a female, comparisons of body size and shape with all species that occur in surrounding areas clearly demonstrates, that it is different from all described species. Nevertheless, males would be useful to corroborate the taxonomic decision.

It is uncertain whether the apparently very restricted ranges of most species of the genus Arhytinus are due to the extremely sparse material and the apparent difficulties in sampling these species, or whether they match the actual distribution patterns. Very few species, particularly those from islands in the Indonesian and Philippine insular belts, have been recorded from more than one locality, or one island. Because most Arhytinus species, as far as it has been recorded, have been sampled in more or less dense forest, the ranges indeed may be restricted, because such forest types favor the development of restricted ranges, or, vice versa, impede the vagility of those forest species.

Since the holotype is a female, the relationships of the new species so far are uncertain, because the complexly structured and very different male genitalia offer the best tool for species differentiation and probably also for the determination of relationships.

Although several species of Arhytinus occur in New Guinea and one on each of New Britain and New Ireland, the genus is an Oriental faunal element which is not only demonstrated by its apparent absence from Australia, but, more importantly, because the presumably most basal species, in terms of their phylogenetical status, occur in mainland Asia and in the northern part of the Indonesian Archipelago (Baehr, 2010).

Identification

When using the key to species of Arhytinus in Baehr (2012), couplet 27 is easily reached, but must be modified as follows:

27 Elytra shorter, ratio length/width >1.32; base of pronotum narrower as compared with apex, ratio base/apex >1.0; also pronotum narrower, ratio width/length >1.52. Timor Arhytinus sp. nov. — Elytra longer, ratio length/width >1.40; base of pronotum wider as compared with apex, ratio base/apex >1.10; also pronotum usually wider, ratio width/length >1.52, usually much more. Southern India, Sikkim, Burma, Thailand, Vietnam, China, Philippines, Sumatra, Java

.......................... couplet 27 of Baehr’s (2012) key.

Although A. timorensis keys out with A. embidioioides Bates, 1889, A. indicus Baehr, 2010, A. gerdi Baehr & Schmidt, 2010, and A. darlingtoni Baehr, 2012, it is most similar in body shape, particularly in the very short elytra, to A. brendelli Baehr & Schmidt, 2010, from Sulawesi. However, this latter species is smaller and has a decidedly wider pronotum.

Colpodes truncatellus Fairmaire, 1881.—25 ex. “Kablaki Hotel, Same 8°59’06”S 125°38’53”E at mv light opposite field
Colpodes obscuritaris Chaudoir, 1879. —3 ex. “Bobonaro 9°01'47.6"S 125°19'29.1"E at light, hotel balcony 835m 28.xi.2011 V. Kessner, Z. Afranio TL169/11” K402676 (AMS); “2.7k N Aileu 8°42'28"S 125°33'46"E coffee/pans 30.v.2012” K402677 (AMS); “1k SSW Maubisse, R. Sara, Paraserianthes 950m 1.vi.2012 C. Reid TL2012/101/587 (AMS); “c 1k N Maubisse c8:50'00"S 125°35'46"E at light, cafe verandah c.1400m. 30.xi.2011 V. Kessner, Z. Afranio TL169/11” K402678 (AMS); “2.7k N Aileu 8°42'28"S 125°33'46"E coffee/Paraserianthes 950m 1.vi.2012 C. Reid TL2012/101/587 sweeping” K402675 (AMS); “1k SSW Maubisse, R. Sara, Paraserianthes 950m 1.vi.2012 C. Reid swep LT2012/099/585” K402674 (AMS). A widespread species in the Indonesian Archipelago.

Colpodes nr. saphyrinus Chaudoir, 1879. —1 ex. “Mt Laritame 8.69178°S 126.38719°E water tank, edge moss forest, 1150m TL2012/011/030 b/light bucket trap 31.v.2012” K402600 (AMS). The single specimen is fairly similar to C. saphyrinus, a species widely distributed in the Oriental Region. Several similar, apparently undescribed, species are known from the Oriental Region, therefore the determination is doubtful.

Colpodes sp. 1.—1 ex. “Mt Laritame 8.69178°S 126.38719°E water tank, edge moss forest, 1150m TL2012/011/030 yellow pans 30.v.2012” K402599 (AMS). An additional, presently indeterminate, probably undescribed species of the genus Colpodes s.l.

Colpodes sp. 2.—1 ex. “Bobonaro 9°01'47.6"S 125°19'29.1"E at light, hotel balcony, 835m 26.xi.2011 V. Kessner, Z. Afranio TL169/11” K402585 (AMS). Another indeterminate, probably undescribed species of the genus Colpodes s.l.

Dicranonus queenslandiclus (Sloane, 1903). —3 ex. “Mt Laritame 8.69178°S 126.38719°E water tank, edge moss forest, 1150m TL2012/011/016 b/light bucket trap 31.v.2012” K402681–682 (AMS); “Mt Laritame 8.69178°S 126.38719°E water tank, edge moss forest, 1150m TL2012/011/016 mv bucket trap 31.v.2012” K402680 (AMS). This species is newly recorded from Timor and was previously only known from northern Australia.

Notagonum Darlington, 1952

Diagnosis. Medium sized, fully winged, non metallic species with the complete set of setiferous punctures on head, prothorax, and elytra, slightly/weakly excised 4th tarsomere of the metatarsus, and glabrous lower surface of the 5th tarsomeres.

The genus Notagonum was founded by Darlington (1952) for a group of platynine species of medium body size and average body shape, that possess all regular setiferous punctures on head, prothorax, and elytra, usually are fully winged, and do not bear any metallic colouration. In its external appearance this genus is similar to the northern genus Platynus Bonelli, 1810 (s.l.), but is distinguished from most species of Platynus by the absence of setae at the lower surface of the 5th tarsomere. Whether the genus Notagonum can be maintained in future, has to be checked by a general taxonomic and phylogenetic revision of the Oriental-Papuan Platynini, that, however, would be a major task and probably will not be undertaken in the near future. Some provisional thoughts on the phylogeny at least of the Platynini from Melanesia have been provided by Liebherr (2005).

The genus was founded for two species from New Guinea, but additional species from Australia and the Indonesian and Philippine Archipelagos were either later described, e.g. by Louwerens (1955), or were transferred from other genera, mostly from Colpodes Macleay, 1825 s. l. (Moore et al., 1987; Lorenz, 2005). In terms of species, the genus is still most numerous in New Guinea (Darlington, 1952; 1971; Baehr, 2010a; 2010b). From Timor so far a single species was recorded, namely Notagonum pleurale (Jordan, 1894) that was originally described as a species of Colpodes.

As far as their habits have been recorded (see Darlington, 1952), most species of the genus Notagonum inhabit more or less wet environments, where some even live on the banks of rivers and creeks. Some species, however, have been collected in leaf litter in more or less closed forest. All species are ground living, and most have been sampled at low to median altitudes, but in New Guinea a few species even occur at rather high altitude. Almost all specimens from Timor likewise were collected in rain or moss forest between 735 and 1250 m, but a single specimen was sampled at 2050 m in a Eucalyptus urophyllum-Vaccinium pasture gully.

Notagonum reidi sp. nov. Baehr

Figs 5, 14, 21

Paratypes (22): 4 ♂♂ and 7 ♀♀ same data as holotype: K402603, K402609–611, K402613–614, K402617–619 (AMS); 1 ♂, 1 ♀ K402605, K402612 (CBM); 4 ♂♂ and 1 ♀, “TIMOR LESTE Mt Laritame 8.69181°S 126.38939°E water tank, edge moss forest, 1250m TL2012/012/036 black light/bucket trap 31.v.2012” K402621–625 (AMS);

Figure 5. Notagonum reidi sp. nov. (body length 7.2 mm).

Etymology. The name, proposed by MB, acknowledges co-author and collaborator Dr Chris Reid, who prepared this material.

Diagnosis. A medium sized, more or less dark piceous species without distinct spines or denticles at the apex of the elytra; distinguished from *N. pleurale* (Jordan, 1894) by slightly lesser body size, indistinct dark red spots on the frons, impunctate thoracic and abdominal sterna, and almost similarly sized lobes of the 4th tarsomere of the metatarsus; and from *N. angusticolle* sp. nov. by wider pronotum with coarsely punctate lateral part of the base, shorter elytra, shorter antenna, and different structure of the internal sac of the aedeagus.

Description. Measurements. Body length: 7.2–8.4 mm; width: 2.85–3.3 mm; ratios: width/length of pronotum: 1.29–1.32; width widest diameter/base of pronotum: 1.19–1.22; width base/apex of pronotum: 1.23–1.25; width pronotum/ head: 1.30–1.35; length/width of elytra: 1.62–1.65; length/ width of 6th antennomere: 2.55–2.65.

Colour (Fig. 5). Dark piceous to almost black, lateral margin of the pronotum inconspicuously, but rather widely, more or less pale red, margin of elytra inconspicuously, extremely narrowly dark red. Labrum and mandibles reddish-piceous, palpi and antenna more or less pale red, 1st antennomere at least at the undersurface paler than the rest. Frons with two large though indistinct, more or less dark red spots. Legs dark red to reddish-brown, outer surface of the tibiae slightly darker. Epipleura of prothorax and elytra more or less pale red, lower surface reddish-brown.

Head (Fig. 5). Of average size, dorsal surface moderately convex. Eye large though laterad but moderately protruded; orbit short, oblique, about one third of length of eye. Labrum anteriorly straight; mandibles of normal size and shape; palpi elongate, impose. Mentum with acute, unidentate tooth and two elongate setae. Submentum quadrisetose. Antenna elongate, median antennomeres slightly > 2.5 × as long as wide, densely pilose from middle of 4th antennomere. Frons slightly convex, frontal furrows surface, rather shallow, slightly turned outwards. Usually mediadiely of eye with a more or less distinct, shallow, circular groove. Neck with shallow but distinct transverse sulcus. Surface glabrous, without microreticulation except on labrum, with rather sparse, extremely fine punctures that are only visible at very high magnification, very glossy. Only lateral of the frontal furrows surface slightly rugose.

Pronotum (Fig. 5). Rather wide, widest at or slightly in front of middle, dorsal surface gently convex. Base rather wide, wider than apex. Apex well excised; apical angle protruded and widely rounded at tip; lateral margin in anterior half gently convex, in basal half oblique and straight or but slightly convex, near base faintly sinuate. Base in middle straight, laterally slightly oblique. Basal angle obtusely angulate, c. 100°. Apex and middle of base margined, lateral parts of base barely margined. Lateral margin and channel rather wide and deep, basad widened and explanate. The anterior transverse sulcus fairly deep, narrow, the posterior sulcus wide and shallow; median line distinct, well impressed, almost complete. The anterior marginal seta situated slightly in front of middle, the posterior seta situated at basal angle. Disk with irregularly transverse, superficial striae. The lateral margin in basal half and the lateral parts of the base with coarse, rugose punctures. Disk with extremely fine and sparse punctures barely recognizable even at high magnification, and with very superficial traces of transverse microreticulation, surface very glossy.

Elytra (Fig. 5). Moderately short and wide, slightly widened apicad, widest slightly behind middle, dorsal surface moderately depressed. Humerus wide, slightly produced but widely rounded, lateral margin in basal half almost straight but slightly oblique, in apical half regularly convex, with rather shallow, not angulate excision near apex, margin slightly incurved towards suture and without, or with a faint,
obtuse protuberance at suture. Lateral margin very narrow. Stiation complete and well impressed, all striae extended to apex, impunctate. Intervals depressed. The anterior discal punctuation situated at basal fourth and attached to the 3rd stria, the median punctuation situated slightly behind middle, the third punctuation about at apical fifth, both, median and posterior punctures attached to the 2nd stria. Setae fairly elongate. Marginal series consists of 21–22 punctures that are not or barely interrupted in middle. Surface with extremely fine, barely recognizable punctures, without microreticulation or with finest traces of transverse microreticulation, very glossy, slightly iridescent.

Lower surface. Surface, including abdomen, impolose and almost impunctate, except the narrow mesepisternum which is punctate. Surface glossy throughout. Metepisternum elongate, c. twice as long as wide at apex. Terminal sternum in male bisetose, in female quadrisetose.

Legs. Of normal shape and structure. Tarsi sulcate on both sides. 4th tarsomere of metatarsus little excised, the outer lobe little longer than the inner one. 1st–3rd tarsomeres of the male protarsus widened and biseriately squamose.

Male genitalia (Fig. 14). Genital ring rather narrow, laterally slightly convex, with moderately wide asymmetric, obtusely convex apex and very narrow base. Aedeagus rather narrow and elongate, straight, depressed, lower surface, apart from near base, almost straight. Apex rather elongate, straight, depressed, regularly triangular. Internal sac with several sinuate, sclerotized rods. Both parameres comparatively short and compact, the right one stouter, with obliquely rounded apex, the left one with obtusely triangular apex.

Female gonocoxites (Fig. 21). Gonocoxite 1 large, with about 8 stout ensiform setae at the apical rim of the ventral surface; gonocoxite 2 comparatively small, slightly curved, with obtusely angulate apex, with one elongate dorso-median ensiform seta above middle, two or three rather stout ventro-lateral ensiform setae in middle, and two short, preapical nematiform setae originating from a pit. Lateral plate along the whole apical margin with many short and rather delicate setae.

Variation. Very little variation noted,

Distribution. Upland areas of Timor Leste, from Bobonaro to Mount Laritame.

Collecting circumstances. Most specimens were collected in or near rain forest and moss forest between 735 and 1250 m, usually at light or in yellow pans, one, however, in an Eucalyptus urophyllum-Vaccinium pasture gully at 2050 m.

Notagonum angusticolle sp. nov. Baehr

Figs 6, 7, 15

Holotype ♂, “TIMOR LESTE 7k E Laclubar on Manatuto Rd 8°44′39″S 125°58′29″E grassy bog/stunted E urophyllum/Barringtonia 950 m 1.vi.2012 C.Reid TL2012/101/587 sweeping” K402608 (AMS). **Paratype:** ♂ 1 “TIMOR LESTE 2.7k N Aileu 8°47′28″S 125°33′46″E coffee/Parasenianthes 1180 m 4.vi.2012 C. Reid TL2012/108/600” K402608 (AMS).

Etymology. The name refers to the narrow pronotum.

Diagnosis. A medium sized, reddish-piceous species, distinguished from both other species recorded from Timor by the narrow, barely punctate prothorax, the distinct denticle at the apex of the elytra, and a distinct angle at the apex of the 3rd stria; further distinguished from *N. pleurale* (Jordan, 1894), by slightly lesser body size, impunctate thoracic and abdominal sterna, and almost similarly sized lobes of the 4th tarsomere of the metatarsus; and from *N. reidi* sp. nov. by longer elytra, slenderer antenna, and different structure of the internal sac of the aedeagus.

Description. Measurements. Body length: 7.75–7.8 mm; width: 2.95–3.0 mm; ratios: width/length of pronotum: 1.19–1.21; width widest diameter/base of pronotum: 1.17–1.19; width base/apex of pronotum: 1.38–1.39; width pronotum/head: 1.31; length/width of elytra: 1.68–1.72; length/width of 6th antennomere: 3.8–3.9.

Colour (Fig. 6). More or less dark piceous, lateral margins of the pronotum conspicuously and rather widely pale red, margin of elytra not perceptibly paler. Labrum, mandibles, and palpi piceous, antenna piceous, but three basal antennomeres slightly paler than the rest. Frons with two large though indistinct, more or less dark red spots. Legs dark red to piceous, outer surface of the tibiae slightly darker. Epipleura of prothorax and elytra more or less pale red, lower surface reddish-brown.

Head (Fig. 6). Of average size, dorsal surface moderately convex. Eye large, laterad moderately protruded; orbit short, oblique, slightly less than one third of length of eye. Labrum anteriorly straight; mandibles of normal size and shape; palpi elongate, impolese. Mentum with acute, unidentate tooth and two elongate setae. Submentum quadrisetose. Antenna very elongate, median antennomeres almost 4 × as long as wide, densely pilose from middle of 4th antennomere. Frons regularly convex, frontal furrows linear, rather shallow, slightly outturned. Neck with shallow but distinct transverse sulcus. Surface glabrous, without microreticulation except on labrum, without perceptible punctures.

Figure 6. *Notagonum angusticolle* sp. nov., head and prothorax.
Pronotum (Fig. 6). Comparably narrow, widest at or slightly in front of middle, dorsal surface gently convex. Base rather wide, wider than apex. Apex well excised; apical angle protruded and widely rounded at tip; lateral margin gently convex to base, near base not sinuate. Base in middle straight, laterally rather oblique. Basal angle obtuse, at tip even shortly rounded, c. 110°. Apex and base completely margined. Lateral margin and channel in apical half narrow, but deep, basad widened and explanate. The anterior transverse sulcus rather shallow, narrow, the posterior sulcus deeper; median line distinct, well impressed, almost complete. The anterior marginal seta situated slightly in front of middle, the posterior seta situated very slightly in front of the basal angle. Disk irregularly transverse, with very superficial strioles. Lateral margin and base barely punctate. Disk without perceptible microreticulation and apparently impunctate, surface very glossy.

Elytra (Fig. 7). Rather elongate, slightly widened apicad, widest slightly behind middle, dorsal surface moderately depressed. Humerus wide, slightly produced but widely rounded, lateral margin in basal half almost straight but slightly oblique, in apical half regularly convex, with rather shallow, not angulate excision near apex; at level of 3rd stria with an obtuse but distinct, angle, and with a short, distinct sutural denticle. Lateral margin very narrow. Striation complete and well impressed, all striae extended to apex, impunctate. Intervals depressed. The anterior discal puncture situated at basal fourth and attached to the 3rd stria, the median puncture situated about at apical third, the third puncture about at apical sixth, both, median and posterior punctures attached to the 2nd stria. Setae fairly elongate. Marginal series consists of 18 punctures that less dense in middle. Surface with extremely fine traces of very transverse microreticulation, very glossy, slightly iridescent.

Lower surface. Surface, including abdomen, impilose and almost impunctate, except the narrow mesepisternum which is punctate. Surface glossy throughout. Metepisternum elongate, slightly > twice as long as wide at apex. Terminal sternum in male bisetose.

Legs. Of normal shape and structure. Tarsi sulcate on both sides. 4th tarsomers of metatarsus little excised, the outer lobe little longer than the inner one. 1st–3rd tarsomers of the male protarsus widened and biseriately squamose.

Male genitalia (Fig. 15). Genital ring rather narrow, almost parallel-sided, with asymmetric, obtusely triangular apex and very narrow base. Aedeagus rather narrow and elongate, straight, depressed, lower surface, apart from near base, almost straight. Apex rather elongate, straight, depressed, obtusely triangular. Folding of internal sac rather simple, but in middle of bottom with a short, sclerotized piece and another, curved, narrow, sclerotized rod. Both parameres comparatively short and compact, the right stouter, both with obtusely triangular apex.

Female gonocoxites. Unknown.

Variation. Very little variation noted.

Distribution. Upland areas in western part of Timor Leste.

Collecting circumstances. One specimen was collected at 1180 m in a grassy bog beside stunted eucalypt woodland with grass and *Melastoma*, the other was collected at 950 m in a plantation of coffee shaded by *Paraserianthes*, by sweeping.

Remarks. In body shape and colouration both new species are quite similar to the other described Timorese species, *N. pleurale*. However, both differ in some respects from that species: e.g. in body size and little or not punctate thoracic and abdominal sternum. With respect to the wide and laterally punctate pronotum and the almost unarmed apex of the elytra, *N. reidi* comes closer to *N. pleurale*, whereas *N. angusticolle* is more distinct, mainly in view of the distinctly denticulate elytral apex. Comparison of both new species with almost all described, similarly sized and structured species of the genus from New Guinea and Australia corroborates their taxonomic distinctness. The same applies for those species of *Notagonum* that are recorded from neighboring areas, e.g. Sulawesi, the southern Lesser Sunda Islands, and the Moluccas.

Presumably the genus *Notagonum* is a Papuan, or even an Australian, faunal element, because the few species that occur in Australia lack any special character states that are present in a couple of species in New Guinea: e.g. angulate or spined elytral apex, very narrow body shape, pilose abdominal sterna, small, but laterad markedly protruded eyes, and others. Although in Australia and in large parts of New Guinea *Notagonum* species are lowland dwellers, and many species are widely distributed, the high taxonomic and morphological diversity of the genus in New Guinea may be caused by the remarkably dissected surface of the central part of New Guinea with its very high mountains and deep valleys. Such a landscape strongly supports rapid speciation events.

The species of *Notagonum* on Timor belong to the Papuan-Australian fauna and thus show the close relation of part of the Carabid fauna of Timor to the Australian and Papuan fauna.

Tribe Perigonini

The tribe Perigonini includes small, characteristically shaped Carabid beetles which occur on all continents, but are most common in tropical regions (Csiki, 1931). The mostly small, more or less depressed, *Trechus*- or *Tachys*-like beetles are easily identified by the elongate, conical terminal palpomeres, short frontal furrows, and the wide, depressed, usually pilose apical marginal channel of the elytra. The affinities of the tribe Perigonini are not fully understood, but probably they belong to the lachnophorine-odacanthine lineage (Jeannel, 1948).
The genus *Perigona* Castelnau, 1835 has been divided into several subgenera (see Lorenz, 2005) which some authors consider genera. One of these subgenera is *Trechicus* LeConte, 1853, which is distinguished from *Perigona s. str.* by the subapical marginal setiferous punctures of the elytra forming a triangle instead of a straight line. The nominate subgenus *Perigona* includes about 90 described species which are distributed almost worldwide, while the subgenus *Trechicus* includes about 45 described species most of which occur in the Afrotropical, Oriental, and Papuan-Australian regions, but one of which is a synanthropic species, *Perigona nigriceps* (Dejean, 1831), distributed almost worldwide. However, the number of yet unknown or undescribed species in the genus *Perigona* may be large, because, apart from Basilewsky’s (1989) revision of the African Perigonini and Baehr’s (2013) revision of a subgroup of *Perigona s. str.* from the Oriental-Pacific region, no recent comprehensive work has been done on the tribe. The keys of Jedlicka (1964) for the East Asian species, of Darlington (1964, 1968) for the Australian and New Guinean species, and of Andrews (1929) for the Sumatran species are of some use, although they are outdated, and even were incomplete for the then described species. Moreover, these keys, including those of Darlington (1964, 1968), make no use of genitalic characters. However, the male genitalia in most *Perigona* species are complex and thus give an excellent tool for differentiation of the externally very similar species. Indeed, certain species are barely distinguishable without consideration of the genitalia.

Most *Perigona* species occur in litter in closed forest; therefore specimens are usually only collected by specialized sampling methods, such as Berlese extraction or sifting ground litter. Most species can fly, so they are also encountered at light and in flight intercept traps. Because such sampling methods have been employed in few areas and moreover, usually rather casually, the taxonomic knowledge of this group is not satisfactory and rather fragmentary.

No species of the genus has previously been recorded from Timor, although *P. nigriceps* would be expected (present in the examined material) and the related *P. littura* (Perroud & Montrouzier, 1864) might also be expected as it is a similarly distributed species.

Perigona Castelnau

For synonyms and citations see Baehr (2013).

Subgenus Trechicus LeConte, 1853

Trechicus LeConte, 1853: Notes on the classification of the Carabidae of the United States: 386. Type species: *Trechicus umbripennis* LeConte, 1853 (= *Bembidion nigriceps* Dejean, 1831 = *Perigona nigriceps*).

Diagnosis. Small, usually rather wide and fairly depressed species, characterized by the subapical marginal setiferous punctures of the elytra which are arranged in a distinct triangle.

Perigona nigriceps (Dejean, 1831).—4 ex. “beach house nr Baucau 8°44.28'S 126.46906'E beach & foreshore mv bucket trap 10m, 5.vi.2012 TL2012/020/017” K402691 (AMS); “c3k W Maubara 8°37.14'S 125°10.45'E at light, clearing in closed forest 60m 20.xii.2011 V. Kessner, Z. Afranio TL145/11” K402690 (AMS); “Loi Huo 8°77.36S 126.37078'E pasture/vine thicket 280m TL2012/008/044 black light trap @ hotel 29.v.2012” K402692–693 (AMS).

Perigona (Trechicus) timorenspis sp. nov. Baehr

Figs 8, 16

Holotype ♂, “TIMOR LESTE gorge 1k NE Laclubar 8°44.47'S 125°54.54'E uro/siamweed above gorge, at mv light 1030m 3.vi.2012 C. Reid TL2012/107/598” K402525 (AMS). **Paratypes** (4): 2 ♂♂, 1♀, same data as holotype, K402521, K402524 (♀, ♂ AMS), K402523 (CBM); 1♂, “TIMOR LESTE Mt Laritame. 8°69.178S 126.38719'E water tank, edge moss forest, 1150m TL2012/011/016 mv bucket trap 31.v.2012” K402522 (AMS).

Etymology. The name refers to the occurrence of this species on the island of Timor.

Diagnosis. A medium sized species with wide subapical channel, very wide aedeagus, and a pattern of various narrow, sclerotized rods in the internal sac by combination of wide prothorax with comparatively narrow base, and absence of regularly coiled structures in the internal sac. Further distinguished from the nearest related species *P. punctatostriatus* Baehr, 2013 and *P. moluccensis* Baehr, 2013 by pale latero-apical angles of the pronotum, longer elytra, the wide, pale margin of the elytra, greater number of deeply impressed elytral striae, and the different structure of the internal sac of the aedeagus.

Description. **Measurements.** Body length: 3.65–3.75 mm; width: 1.7–1.75 mm. Ratios. Width/length of pronotum: 1.43–1.48; width of widest diameter/base of pronotum: 1.21–1.24; width apex/base of pronotum: 0.93–0.95; width pronotum/head: 1.25–1.31; length/width of elytra: 1.37–1.40.

Colour (Fig. 8). Black, apical angle of the pronotum widely pale yellow, also the lateral part of the elytra, about from 5th stria laterad, widely pale red. Clypeus and labrum, palpi, and antenna yellow to pale red. Femora pale yellow, tibiae and tarses slightly darker, pale red. Under surface more or less dark piceous, but lateral parts of thorax, and the whole abdomen paler, light brown to reddish-brown.

Head (Fig. 8). Of average size, dorsal surface fairly depressed. Eye large, laterad markedly protruded; orbit very short. Labrum in middle slightly incised; mandibles elongate, straight; palpi elongate, maxillary palpus sparsely pilose. Mentum with acute, undentate tooth and two elongate setae. Antenna short, median antennomeres slightly longer than wide. Posterior supraorbital setae situated at posterior margin of eye. Frons slightly convex, frontal furrows wide, fairly deep, irregularly curved. Surface with extremely fine and sparse punctures which are only visible at very high magnification, with traces of very superficial irregularly transverse microreticulation, glossy.

Pronotum (Fig. 8). Rather wide, widest slightly in front of middle, dorsal surface fairly depressed. Base rather wide. Apex well excised; apical angle protruded and widely rounded at tip; lateral margin gently convex, in basal third oblique and straight; basal angle obtusely rounded; base laterally slightly convex, in middle straight. Apex and
middle of base not margined, lateral parts of base faintly margined. Lateral margin and channel anteriorly narrow, widened and explanate basad. Both transverse sulci shallow, median line distinct, slightly impressed, abbreviated on both ends. Anterior marginal seta situated at apical sixth, posterior marginal seta situated at basal angle. Extremely fine and sparse punctures barely recognizable even at high magnification; surface in middle without microreticulation, in the apical, lateral, and basal parts with extremely fine and superficial traces of microsculpture that is composed of transverse lines, very glossy.

Elytra (Fig. 8). Rather short and wide, widest slightly behind middle, dorsal surface moderately depressed. Humerus wide, slightly produced but widely rounded, lateral margin slightly convex throughout, apex regularly convex, slightly incurved towards suture. Lateral margin rather narrow, behind humerus extremely finely denticulate and sparsely setulose; subapical sulcus rather wide. At least five, in some specimens also six, median striae deeply impressed and almost complete, rather coarsely punctate. The anterior discal puncture situated at basal third, the median puncture behind middle, the third puncture far removed from the apex. The subapical marginal sulcus with sparse and very short pilosity. Surface apparently impunctate, without microreticulation, very glossy, slightly iridescent.

Male genitalia (Fig. 16). Genital ring moderately wide, almost parallel-sided, with wide, oblique, asymmetric apex and very narrow base. Aedeagus very compact, very wide in middle; lower surface gently bisinuate. Apex straight, short, wide, almost symmetric, triangular. Internal sac with several narrow, variously coiled sclerotized rods and folds. Both parameres large and comparatively elongate, with oblique-convex apex.

Female gonocoxites. Very similar to that of *P. drumonti* Baehr, 2013 as figured in fig. 66 in Baehr (2013): Gonocoxite 1 large, without any setae at the apical rim. Gonocoxite 2 trianularly curved, with slightly obtuse apex; with one elongate ensiform seta in middle of the ventro-lateral margin, a large ensiform set in middle of the dorso-median margin, and two attached nematiform setae originating from a groove in the apical third of the median margin.

Variation. Very little variation noted.

Distribution. Central part of Timor Leste.

Collecting circumstances. The species was sampled at light and in “bucket trap” in open *Eucalyptus* woodland with weeds, and at the edge of moss forest, both localities being slightly above 1000 m.

Remarks. This is the first species of *Perigona* explicitly recorded from Timor. However, apart from the widely distributed *P. nigriceps* (Dejean) which was also present in the examined material, other species are likely to occur on Timor, but have not yet detected as a consequence of the limited exploration of this island.

The new species in its external as well genitalic morphology is very similar to *P. punctatostriata* Baehr, 2013 from Sulawesi, less so to *P. moluccensis* Baehr, 2013 from the Moluccas. The close relationship to *P. punctatostriata* is best seen in the similarly shaped aedeagus and rather similarly structured internal sac. But also body shape, striation of the elytra, and surface structure are very similar, though the colouration is quite different. Apparently the new species forms a group with both mentioned species, which would suggest that it is a southern Oriental faunal element.

Perigona sp.—1♀ ex. “Valu Sere Resort, opposite Jaco Is S 8.40931E 127.29875E vine thicket on Is, 5m TL2012/004/019 mv bucket trap 26.v.2012” K402668 (AMS). The specimen is quite similar to *P. sumatrensis* Baehr, 2013, but for a reliable identification of these very similarly shaped and structured species the male genitalia are needed.

Tribe Harpalini

For the the harpaline fauna of the southern Oriental region virtually no revisions exist. Identification of species, in some instances even of genera, therefore is difficult. For some species Darlington’s (1968) revision of the New Guinean Harpalini may be of use, but the Australian Harpalini also are almost unrevised, so that comparisons are difficult or even impossible. Certainly careful revisions of most genera would be very useful, instead of descriptions of single species, which render identifications rather more difficult. Several species of this Timorese collection could be only identified to genus.

Acupalpus sp.—2 ex. “beach house nr Baucau 8:4428S 126:4906E beach & foreshore mv bucket trap 10m, 5.vi.2012 TL2012/020/017” K402661 (AMS); “Los Palos
Batoscelis oblongus (Dejean, 1831).—1 ex. “4k S Laga 8°31’13”S 126°33’39”E, cow dung, 5.vi.2012, TL2012/014/004” K402636 (AMS). A widely distributed species in the southern Oriental region, New Guinea, and in northern Australia. The specimen was collected sheltering under dried dung (CAMR).

Coleolissus papua Darlington, 1968.—1 ex. “gorge 1k NE Laclubar 8°44’47”S 125°54’54”E uro/siamweed above gorge, at my light 1030m 3.vi.2012 C. Reid TL2012/107/598” K402633 (AMS). This species also occurs in New Guinea and north-eastern Australia.

Egadroma cf. robustum (Sloane, 1907).—2 ex. “Mt Laritame 8.69178S 126.38719E water tank, edge moss forest 1150m TL2012/011/016/black light bucket trap 31.v.2012” K402662 (AMS). “Tutuala comm twr, 3k E Tutuala 8°24’35”S 127°17’02”E dry rf on Is c200m TL2012/003/026 yellow pans 25.v.2012” K402688 (AMS). The specimens are very similar to Australian specimens of E. robustum, but the Oriental and Australian species of this genus need revision.

Gnataphanus subolivaceus (Macleay, 1825).—1 ex. “c3k W Maubara 8°37’14”S 125°10’45”E at light, cleaning in closed forest 60m 20.xi.2011 V. Kessner, Z. Afranio TL145/11” K402639 (AMS). The species was recorded from Sulawesi and some Lesser Sunda Islands.

Gnataphanus timorensis (Schauberger, 1934).—12 (Timor): not collected.

Gnataphanus upolensis (Csiki, 1915).—3 ex. “c3k W Maubara 8°37’14”S 125°10’45”E at light, cleaning in closed forest 60m 20.xi.2011 V. Kessner, Z. Afranio TL145/11” K402635 (AMS); “Kablaki Hotel, Same 8°59’60”S 125°38’53”E at light sheet” K402663 (AMS). The genus Gnataphanus nr. P. subrugosus Dejean, 1831 is badly in need of a revision, because not even the limits of the genus are settled.

Tribe Harpalini, subtribe Amblystomolina
This subtribe is sometimes included in, or treated as a synonym, of Harpalina (Bouchard et al., 2011). Revisions of the Oriental species, as well as of the Australian Amblystomolina, are very much required.

Amblystomus quadriguttatus (Motschulsky, 1858).—2 ex. “Lai Huo 8.77836S 126.37078E pasture/vine thicket 280m TL2012/008/044 black light trap @ hotel 29.v.2012” K402665 (AMS); “Fatukama E of Dili 8°31.585S 125°39.727E dry acacia scrub, beach shingle 5m 8.xi.2011 C. Reid Site 2 cow dung” K402664 (AMS). A common species in the southern Oriental Region and in northern Australia. The specimen at Fatukama was collected sheltering under dried dung (CAMR).

Amblystomus sp.—1 ex. “Hatoudo 8°58’55”S 125°37’27”E riverine rain forest, 735m 27.v.2012 C. Reid TL2012/088/546 light sheet” K402663 (AMS). In view of the lack of revisions of the southern Oriental as well as Australian species this is not determinable.

Tribe Licinini
The Australian Licinini need to be revised on the generic level, and most genera also need taxonomic revisions. Therefore identifications are difficult or impossible.

Lacordairea sp.—1 ex. “Ramelau sum’t plat. 8°54’51”S 125°39’31”E 28/05/2012 stunted eucs/vaccinium/moss/grass 2750m C. Reid grass tufting TL2012/090/575” K402667 (AMS). The specimens are doubtfully assigned to the genus Lacordairea Castelnau, 1867. This genus, however, is urgently in need of a revision, therefore, reliable identifications are almost impossible.

Tribe Chlaeniini
This tribe is extremely numerous in the Oriental region, where a multitude of often similar species exist. Unfortunately almost no reliable revisions are available for the Oriental fauna, therefore identifications are almost only possible by comparisons with types or identified species.

Chlaenius flaviguttatus Macleay, 1825.—1 ex. “c3k W Maubara 8°37’14”S 125°10’45”E at light, cleaning in closed forest 60m 20.xi.2011 V. Kessner, Z. Afranio TL145/11” K402679 (AMS). A widespread species in the southern Oriental Region and in New Guinea.

Chlaenius timorensis Darlington, 1970 (Timor): not collected.

Chlaenius sp.—1 ex. “up rd NW Same 8°970325 125:60821E coffee plantn by stream, 1065m 14.xi.2011 C.
Reid Site 35 under log” K402678 (AMS). A large species probably related to *C. femoratus* Dejean, 1826, which occurs on Borneo.

Tribe Lebiini

A very large tribe with about a dozen subtribes. However, the subtribal systematics is controversial, therefore in the present paper subtribes are neglected. Many genera in the Oriental and Australian fauna have not yet been revised, therefore identifications are difficult or impossible. However, the Oriental to Australian genus *Anomotarus* was recently revised by Baehr (2003c) for the region including Timor, with two Timorese species described. These were collected in the present survey, together with another species described in that work from the Indonesian islands.

Anomotarus apicalis Baehr, 2003c.—6 ex. “gorge 1k NE Laclubar 8°44'47"S 125°54'54"E siamweed above gorge, at mv light 1030m C.Reid TL2012/107/598” K402505–509 (AMS), K402504 (CBM). This species is apparently endemic to Timor.

Anomotarus latiplaga Baehr, 2003c.—1 ex. “Hatubuilco Rd 11.5km W t'off h'way 8°53'12"S 125°32'49"E E urophylla/Vacc pasture/gully 2050m 28.v.2012 C.Reid TL2012/080/762” K402502 (AMS). *Anomotarus latiplaga* was described from Java, Bali and Adonara (Baehr, 2003c). This is the first record from Timor.

Anomotarus timorensis Baehr, 2003c.—1 ex. “Ramelau sum’t plat. 8°54'51"S 125°39'31"E 28/05/2012 stunted eucs/vaccinium/moss/grass 2750m C. Reid grass tufting TL2012/090/575” K402503 (AMS). Another species apparently endemic to Timor.

Aristolebia Bates, 1892

Diagnosis. Main diagnostic characters of the genus Aristolebia are: wide, depressed body; large, semicircular, laterally much protruded eye; semicircular pronotum without definite apical angles; angulate external angle of the elytra; concave excision of the apex of the elytra; presence of two preapical excisions at the inner surface of the mesothorax in the male; apparently also the odd-shaped, very strongly sclerotized aedeagus and the likewise odd-shaped and comparatively very large genital ring; and wide, more or less triangular, asetose gonocoxite 2 of the female.

In many other characters *Aristolebia* is rather similar to the large genus *Lebia* Lateille, 1802 (*sensu lato*) which is certainly closely related.

The fourteen presently recorded species of the genus *Aristolebia* are distributed from southern India to China, the Philippines, Sumatra, Sulawesi, Flores, New Guinea, and northern Australia (*Csiki, 1932; Jedlicka, 1963; Darlington, 1968; Moore et al., 1987; Kabak, 2003; Baehr, 2004b; 2010d; 2011; 2015a; Lorenz, 2005; Kirschenhofer, 2012*). Most species of this genus are only available in small numbers and some are even known just from the holotype, which deficiency most probably is caused by the almost unrecorded habits of the species and, as a consequence, by the inadequate sampling methods employed. The new species described herein is likewise available only as the holotype. However, in view of the very characteristic colour patterns of pronotum and elytra in almost all species of *Aristolebia* and of the characteristically and rather differently shaped female gonocoxites (see Baehr. 2010; 2015a), it is considered reasonable to describe the new species on the basis of a single female.

The few records and the apparent difficulties in sampling of specimens suggest that the present distribution of the species, as well as the species diversity, are quite inadequately known, and that additional species may be detected in future within, but probably also outside of the hitherto recorded range of the genus.

Aristolebia timorensis sp. nov. Baehr

Figs 9, 22

Holotype ♀, “TIMOR LESTE c3k W Mauhara 8.37'14"S 125.10'45"E at light, clearing in closed forest 60m 20.xi.2011 V. Kessner, C. Afrano TL145/11” K402684 (AMS).

Etymology. The name refers to the occurrence of this species on the island of Timor.

Diagnosis. Moderately large species (in genus), distinguished from all vividly patterned species except *A. oculata* Baehr, 2010, *A. triramosa* Baehr, 2010, and *A. floreana* Baehr, 2011 by presence of a red spot in the posterior half of the elytra. From these three species distinguished by the distinct pale lateral margin of the pronotum and slightly different colour pattern of the elytra, particularly the narrow, oblique, rhomboidal posterior elytral spot. From the nearest related species, *A. floreana* and *A. timorensis* also distinguished by narrower pronotum and longer elytra.

Description. Measurements. Body length: 8.9 mm; width: 3.8 mm. Width/length of pronotum: 1.49; width of pronotum/width of head: 1.32; length/width of elytra: 1.57; width of elytra/width of pronotum 1.65.

Colour (Fig. 9). Head black, labrum and mandibles reddish brown, palpi and antenna pale red; pronotum black with distinct, wide pale lateral margins; elytra black with a pale red pattern, which consists of a large, oblique spot in basal half which is narrowly separated at suture, separated by a narrow black stripe from the lateral border, and narrowly attains the base, and with a narrow, oblique, rhomboidal spot from mid of 3rd to 8th interval in apical half that is widely separated from apex. The median basal area al well as the whole apex is black. The lateral margin is very narrowly pale red. Legs yellow with the tibiae very slightly darker. Epipleurae of prothorax and elytra yellow, rest of lower surface reddish-piceous, abdomen apical darker.

Head (Fig. 9). Of moderate size. Eye very large, semicircular, laterad remarkably protruded, orbit not perceptible. Neck with fairly deep transverse impression. Labrum anteriorly straight, 6-setose. Mentum with very shallow, apically transverse or very slightly rounded convexity. Glossa elongate, polysetose at apex, paraglossae wide, foliaceous, as long as glossa and fused to it, densely setose at margin. Galea with wide, rather depressed last segment that is extremely densely pilose. Lacinia large, with very elongate terminal hook and rather dense row of teeth at inner margin. Palpi of normal size, very sparsely pilose. Mentum asetose, but submentum with a very elongate seta.
Figure 9. *Aristolebia timorensis* sp. nov. (body length 8.9 mm).

at either side. Mandibles short and wide, evenly curved. Antenna elongate, surpassing base of pronotum by three antennomeres, pilose from 4th antennomere, 6th and 7th antennomeres almost $3 \times$ as long as wide. Labrum and clypeus with fine and sparse punctures, frons and neck with some wrinkles and with coarse and rather dense punctures that are anteriorly rather corrugated. Microreticulation present but extremely very superficial and fine, barely recognizable, isodiametric, therefore surface glossy.

Pronotum (Fig. 9). Rather wide. Anteriorly half about semicircular, widest slightly behind middle, little narrowed towards base, therefore base much wider than apex. Apex slightly concave, apical angles very widely rounded, lateral margin convex, in basal half oblique and almost straight, basal angle slightly more than rectangular, slightly obtuse at tip, base in middle slightly produced, laterally almost straight. Apex narrowly margined, base in middle coarsely, laterally more finely margined. Anterior transverse sulcus and median line rather deep, sulcus situated close to apex. Posterior transverse sulcus deeply impressed. Lateral margin anteriorly moderately wide, widened and widely explanate towards base. Disk gently convex. Anterior lateral setae situated about at anterior third, slightly removed from margin, posterior setae situated at basal angle. Surface of disk very irregular, corrugated striales, barely punctate, only with finest traces of extremely superficial, isodiametric microreticulation, glossy.

Elytra (Fig. 9). Moderately elongate, fairly wide, widened towards apex, widest about at apical third, upper surface depressed. Humerus evenly rounded, lateral margin evenly convex. External apical angle angulate, forming a short, acute denticle. Sutural angle angulate but not spined, with a tiny denticle; apex oblique, gently bisinate, only near the external angle slightly excised. Striae complete, well impressed, finely crenulate. Intervals moderately raised, slightly convex. 3rd interval with two setiferous punctures, both situated at inner margin of 3rd stria, the anterior one at about basal third, the posterior one behind apical fourth. 14 marginal setiferous punctures present, series slightly interrupted in middle. Punctures of intervals sparse but distinct, irregularly uniseriate, in parts rareribate. Intervals with distinct though slightly superficial, about isodiametric microreticulation which is arranged in irregularly transverse rows, with sparse, extremely short, erect pilosity that is visible only from laterally and at high magnification; surface rather glossy. Posterior wings fully developed.

Lower surface. Prosternal process with an elongate seta at middle. Prosternum, metasternum, and abdomen with moderately sparse, elongate, erect to slightly declined pilosity. Metepisternum elongate, $>2 \times$ as long as wide at anterior margin. Terminal sternum in female with 2, resp. 3 setae at either side.

Legs. Of average size. 4th tarsomeres of all legs widened, deeply ($> \text{half of tarsomere}$) excised, with dense tarsal brush. 5th tarsomere with two rows of several setae on the lower margin. Claws with 9 elongate teeth.

Male genitalia. Unknown.

Female gonocoxites (Fig. 22). Foliaceous. Gonocoxite 1 large, little sclerotized, only the lateral rim narrowly sclerotized, without setae at the apical rim. Gonocoxite 2 short and wide, only partly, but weakly sclerotized, but the lateral and latero-ventral margins narrowly sclerotized, with a small hyaline lateral area, asetose. The ventral and ventro-lateral margins of the lateral plate strongly sclerotized, with a triangular appendix at the ventro-lateral margin.

Variation. Unknown.

Distribution. Western part of Timor Leste. Recorded only from the type locality.

Collecting circumstances. Sampled at light in clearing in closed forest at low altitude.
Relationships. Based on similar body size, shape, and colour pattern of the elytra, this species is probably closest to *A. florea*na Baehr, 2011, recorded from the neighbouring island of Flores, less so to *A. triramosa* Baehr, 2010 and *A. oculata* Baehr, 2010, both from Sulawesi. These four species apparently form a distinct species group that is confined to the southeastern part of the Indonesian Archipelago (Wallacea).

Revised partial key to Aristolebia Bates

When using Baehr’s (2011) key, couplet 8 is easily reached. From this couplet the key has to be altered as below. For comparison, figures given in Baehr’s 2010 and 2011 works are included (Baehr, 2010d, 2011).

8 Apical half of elytra black with a large red spot on either elytron (Fig. 9; Baehr, 2010: figs 3, 4; Baehr, 2011: fig. 4). Sulawesi, Flores, Timor 9

—— Elytra either black with a large red spot in basal half on either elytron, or with a black spot along suture which is widened behind scutellum and in apical half

.. 11

9 Elytra with a contiguous dark sublateral stripe, i.e. the yellow humeral spot does not touch the lateral margin (Fig. 9; Baehr, 2010: fig. 4; Baehr, 2011: fig. 4); aedeagus as in Baehr, 2010: fig. 8 and Baehr, 2011: fig. 2, or unknown .. 10a

—— Elytra without contiguous dark sublateral stripe i.e. the yellow humeral spot widely meets the lateral margin (Baehr, 2010: fig. 3); aedeagus unknown. West Sulawesi *A. oculata* Baehr, 2010

—— The posterior pale spot on the elytra large, broadly attaining the apical margin; pronotum uniformly pale red (Baehr, 2010: fig. 4); tarsal claws with 7 small teeth; aedeagus wide, markedly sinuate, and with acute. Spine-shaped apex (Baehr, 2010: fig. 8); body length >9.5 mm. North Sulawesi

.. *A. triramosa* Baehr, 2010

—— The posterior pale spot on the elytra small, completely encircled by dark colour; pronotum uniformly reddish-brown or black with more or less distinct pale margin (Fig. 1; Baehr, 2011: fig. 4); tarsal claws with 9 small teeth; aedeagus narrower, less sinuate, and regularly triangular apex (Baehr, 2011: fig. 2), or unknown; body length <9 mm. Flores, Timor 10b

—— Pronotum almost uniformly reddish-brown without clearly defined pale lateral margin; anterior pale elytral spot contiguous at suture; posterior spot circular; aedeagus see Baehr, 2011: fig. 2. Flores

.. *A. florea*na Baehr, 2011

—— Pronotum black with distinct pale lateral margin; anterior pale elytral spot narrowly separated at suture; posterior spot narrow, oblique, and rhomboidal (Fig. 9); aedeagus unknown. Timor

.. *A. timorensis* sp. nov.

10b Elytra black with a large red spot in basal half on either elytron. Burma, Thailand, south-eastern China

.. *A. quadridentata* Bates, 1892

—— Elytra with a black spot along suture which is widened behind scutellum and in apical half. New Guinea, northern Australia *A. mucronata* (Sloane, 1907)

Remarks. The discovery of an additional new species from the island of Timor again demonstrates that neither distribution nor number of species of the genus *Aristolebia* are adequately known. The reason for this deficiency most probably is the very unsatisfactory knowledge that we have about the habits of any species, so that specimens of *Aristolebia* are only casually collected and have not been, or presently cannot be, systematically sampled.

However, the four mentioned species from Sulawesi, Flores, and Timor form a distinct group of closely related species which so far has no close relatives, neither in the northern part of the Indonesian Archipelago, nor on neighbouring New Guinea and Australia.

Although almost nothing has been reported about ecology or ethology of any *Aristolebia* species, it seems that they are arboreal (Darlington, 1968) and may live primarily in rain forest. The wide tarsi and the strongly denticulate tarsal claws would support this assumption. However, whether they live preferably on logs or trunks, or rather on twigs and leaves, or in the canopy, is unknown. Darlington suggests that at least the New Guinean species are diurnal, but he also notes that some specimens have been sampled in light traps (like *A. timorensis*), which means that they are also roaming about at night. Nothing is known about feeding habits and food, but the large, protruding eyes suggest that they have good sight and may be diurnal predators.

It is to be expected that additional, more systematic, sampling activities in combination with better knowledge of their habits will further increase the number of species and better depict their distribution. Such sampling should include fogging bark of logs and trunks and of leaves and canopy.

Coptoder a ornatipennis Louwerens, 1949.—3 ex. “gorge 1k NE Lachubar 8°44’47”S 125°54’54”E siamweed above gorge, at mv light 1030m C.Reid TL2012/107/598” K402518–520 (AMS). This species was described from Sulawesi. It also occurs on New Guinea.

Lebia Latreille, 1802

The very large genus *Lebia* (s. l.) is distributed worldwide with a large number of species described from the Oriental region. Authors differ in how the genus should be subdivided, or, whether it should be retained as a single genus. However, this is a matter of opinion about the supraspecific hierarchy which will not be discussed herein in detail.

Unfortunately no general revision of the Oriental species of the genus *Lebia* is available, because the paper of Jedlicka (1963) includes only a part of the then described species and, moreover, does not use genitalic characters for characterization and differentiation of the species; and the key in Habu (1967) covers only the Japanese species.

The matter has recently been made worse, because Kirschenhofer in a couple of papers (e.g., Kirschenhofer, 2009a,b) described various, mostly very similar, species from the Oriental Region, either from single females, or if males are involved, without describing or figuring the internal structures of the aedeagus which in many *Lebia* are very characteristic and complex, because the internal sac may bear variously shaped and located teeth, spines, or
spinose plates. This taxonomic procedure does not really improve our knowledge and renders work on this genus rather more difficult.

Therefore, unfortunately, the internal structures of the male genitalia of almost no Oriental Lebia have been examined, which makes identification of species difficult. Sorting of species only using body size, shape, and color pattern as differentiating characters is compromised by the presence of several very similarly shaped and colored species, and also infraspecific variation in some widely ranging species.

The Papuan species have been keyed by Darlington (1968) in his monumental treatise of the New Guinean Carabidae, and the species of the Australian and Papuan Regions were recently revised by Baehr (2004a), who added several species in a number of supplementary papers, of which that from 2012 (Baehr, 2012c) for the present paper is most important.

Lebia timorensis sp. nov. Baehr

Figs 10, 17

Holotype ♂, “TIMOR LESTE Mt Laritame 8.69178S 126.38719E water tank, edge moss forest 1150m TL2012/011/016 mv light bucket trap 31.v.2012” K402493 (AMS).
Paratypes (3): 2♂♂, same data as holotype, K402495 (AMS), K402494 (CBM); 1 ♂, “TIMOR LESTE Hatoudo 8°58’55”S 125°37’27”E riverine rain forest, 735m 27.v.2012 C.Reid TL2012/088/562 mv lamp” K402492 (AMS).

Etymology. The name refers to the range of this species, the island of Timor.

Diagnosis. Rather small, unicolourous yellow species; distinguished from the most similar species *L. keiana* Baehr, 2012 by basally distinctly sinuate lateral margins of the pronotum, longer elytra, and different arrangement of the denticulate folds in the internal sac of the aedeagus.

Description.

Measurements. Body length: 4.3–5.0 mm; width: 2.05–2.4 mm. width/length of pronotum: 1.44–1.57; width pronotum/head: 1.17–1.21; length/width of elytra: 1.37–1.41; width elytra/pronotum: 1.86–1.95.

Colour (Fig. 10). Upper and lower surfaces uniformly yellow to pale reddish; mouth parts, palpi, antennae, and legs yellow. Elytra without any pattern.

Head (Fig. 10). Of average size and shape, slightly narrower than the pronotum. Eye very large, semicircular. Antenna of moderate size, surpassing the basal angle of the pronotum by about two antennomeres. Labrum in middle gently impressed. Frons with short, shallow, slightly irregular frontal impressions, in middle with a more or less distinct, shallow, triangular impression. Surface with distinct though slightly superficial, about isodiametric microreticulation, with scattered, fine punctures, glossy.

Pronotum (Fig. 10). Wide, considerably wider than head, widest at or slightly in front of middle, slightly narrowed basad. Apical angle widely rounded off, lateral margin anteriorly very convex, from middle slightly oblique-convex, in front of the produced, less than rectangular, basal angle distinctly sinuate. Base in middle much produced, lateral excision deep, lateral parts of base transversal, almost straight. Apex laterally margined, in middle not or indistinctly marginated, base in middle coarsely marginated. Lateral margin explanate throughout, explanation even widened basad, marginal channel fairly deep. Surface with a distinct, moderately deep prebasal transverse sulcus. Disk with quite irregular, concave wrinkles that are more pronounced in basal half; with distinct, about isodiametric microreticulation which is finer and more superficial in the apical half and rugose in middle of the basal half; and with sparse, very fine punctures, surface rather dull to moderately glossy.

Elytra (Fig. 10). Moderately short (in group), oval-shaped, markedly widened towards apex, widest well behind middle. Upper surface slightly convex. Humerus rounded, lateral margin slightly convex throughout, only apical markedly convex, barely incised at basal third. Apical angle widely rounded, apex faintly sinuate, apical margin slightly incurved at suture. Striae complete, deep, at bottom very finely crenulate. Intervals convex throughout. 3rd interval bipunctate, punctures situated at 3rd stria. Series of marginal punctures composed of 13–14 punctures, the penultimate one removed from margin; series not interrupted in middle. Intervals with distinct but slightly superficial, rather transverse microreticulation and very scattered punctures which are barely recognizable, rather glossy. Metathoracic wings fully developed.
Lower surface. Metepisternum rather elongate, slightly less than 2 × as long as wide. Prosternum with a few short hairs in middle; abdominal sterna very sparsely pilose, pilosity slightly denser on terminal sternum. Male terminal sternum quadrisetose.

Legs. Of moderate size. 4th tarsomeres very deeply excised. Tarsal claws with 4 large teeth. 1st–3rd male tarsomeres sparsely, biseriately squamose.

Male genitalia (Fig. 17). Genitalia very similar to those of *L. keiana* Baehr, 2012. Genital ring large, rather elongate, fairly asymmetric, remarkably widened towards apex, with wide, oblique and convex apex and narrow, elongate basis. Aedeagus moderately elongate, slightly widened in middle, barely sinuate, lower surface very gently concave. Apex rather elongate, depressed, straight, triangular. Orificium rather short, situated mainly on the upper surface. Folding of internal sac complex, with a transverse, densely spinose sclerite in middle that is interrupted at bottom, and another straight fold in middle of bottom that consists of 5 rather large spines. Parameres of dissimilar shape, left paramere short in comparison, though longer than right one, with obtusely triangular apex; right paramere short but massive, rhomboidal.

Female gonocoxites. Unknown.

Variation. Rather uniform species, but the largest specimen bears a comparably narrow pronotum.

Distribution. Western part of Timor Leste.

Collecting circumstances. All specimens collected at light, in moss or rain forest at median altitude.

Relationships. With respect to body shape, colouration and structure of the internal sac of the aedeagus this species is very similar, and probably most closely related, to *L. keiana* Baehr, 2012 from nearby Kei Islands. According to shape and structure of the aedeagus the new species and *L. keiana* form a group of fairly similar species together with *L. subglabra* Baehr, 2004 from New Guinea, *L. novabritannica* Baehr, 2004 from New Britain, and *L. salomonica* Baehr, 2004 from Solomon Islands.

Remarks. *Lebia timorensis* is the first species of the genus *Lebia* explicitly recorded from Timor. But this probably is a consequence of the almost non-existent exploration of that island. Additional species from other species groups in future will be detected on Timor, as biological exploration of this island is intensified.

The new species forms a distinct species group together with a number of similarly shaped, but not always similarly coloured, species that possess structurally rather similar male genitalia, as noted above. These species occur on the nearby Kei Islands, on New Guinea, New Britain, and certain islands of the Solomon Archipelago. The group may include additional, not yet detected or described species from the mentioned area, perhaps even from other islands. However, the distribution of the group clearly demonstrates its Papuan provenance, and thus, the new species from Timor is a Papuan faunal element rather than an Oriental one.

Peliocypas sp. 1.—1 ex. “7k E Laculbar on Manatuto rd 8°44'39”S 125°58'29”E grassy bog/stunted E uro/Melastoma 1180m 4.vi.2012 C. Reid TL2012/108/600” K402501 (AMS). The Asian species of the genus *Peliocypas* Schmidt-Goebel, 1846 are badly in need of revision, particularly those of the southern Oriental Region. Although apparently no species of the genus has been recorded from Timor, we refrain from describing any new species, as long as the fauna of Sulawesi, the Moluccas, and the Lesser Sunda Islands has not been satisfactorily worked.

Peliocypas sp. 2.—4 ex. “c 8k NE Maubisse 8°49'33”S 125°37'21”E steep limestone grassland 1600m 16.xi.2011 C. Reid site 47” K402498–500 (AMS); “1k E Mt. Acalara, Turiscai Rd 4.5k from h’way 8°49'45”S 125°37'40”E E uro woodland/vacc on ridge 1625m31.v.2012 C. Reid, TL2012/096/749” K402496 (AMS).

Peliocypas sp. 3.—1 ex. “Mt Laritame 8.6918”S 126.3872”E water tank, edge moss forest, 1150m TL2012/011/016 bucket trap 31.v.2012” K402497 (AMS).

Tribe Zuphiini, subtribe Planetina

The tribal status of the subtribe Planetina is controversial. It is either included in Zuphiini, or in Galeritini (e.g., Bouchard *et al*., 2011). For the present paper, however, the genus *Planetes* is included in Zuphiini.

Planetes sp.—2 ex. “Tutuala comm twr, 3k E Tutuala 8°23'57”S 27°17'02”E dry rf on Is c200m TL2012/003/004 yellow pans 25.v.2012” K402685–686 (AMS). The Oriental species of the genus *Planetes* Macleay, 1825 urgently need a revision, whereas the New Guinean and Australian species are moderately well known (Darlington, 1968; Baehr, 1986). The specimens from Timor do not belong to any described Australian and New Guinean species. Therefore at present they cannot be identified to species.

Brachininae

The subfamily and tribe Brachinini is rather poorly represented in New Guinea and Australia, where almost exclusively the genus *Pheropsophus* (s. l.) Solier, 1834 occurs. For the Oriental Brachinini only old or partial revisions exist, which, however, are inadequate for the southern part of the Oriental Region.

Styphlomerus timorensis (Jordan, 1894).—2 ex. “E side Mt Kuri 4km W Manatuto 8°30'31”S 125°58'59”E dry thrn scrub/rf by spring 130m 2vi.2012 C. Reid TL2012/103/594 swept,” K402512 (AMS), K402513 (CBM). The genus *Styphlomerus* Chaudoir, 1875 is widely distributed in the Afrotropical and Oriental Regions, but apparently does not occur in New Guinea and Australia. Particularly the southern oriental species are in need of revision. This species is so far only recorded from Timor (as *Brachinus*—Jordan, 1894).

Styphlomerus sp.—2 ex. “c3k W Maubara 8°37'14”S 125°10'45”E at light, clearing in closed forest 60m 20.xi.2011 V. Kessner, C. Afranio TL145/11” K402510–511 (AMS). Probably a new species, closely related to the foregoing species.

Biogeographical remarks

The present sample certainly covers only a fairly small part of the carabid fauna of Timor, as 28 of the 53 collected species are represented by singletons. With that proviso, we present some preliminary thoughts about the composition, in a biogeographical sense, of the fauna. About two thirds of the mentioned species belong to, or at least have their
Figure 11. *Mecyclothorax timorensis* sp. nov. male genitalia: aedeagus right side and lower surface, parameres, genital ring. Scales 0.5 mm.

Figure 12. *Mecyclothorax reidi* sp. nov. male genitalia: aedeagus right side and lower surface, parameres, genital ring. Scales 0.5 mm.

Figure 13. *Rhytisternus externus* sp. nov. male genitalia: aedeagus left side, parameres, genital ring. Scales 1 mm.

Figure 14. *Notagonum reidi* sp. nov. male genitalia: aedeagus left side, parameres, genital ring. Scales 1 mm.
Figure 15. *Notagonum angusticolle* sp. nov. male genitalia: aedeagus left side, parameres, genital ring. Scales 0.5 mm.

Figure 16. *Perigona timorensis* sp. nov. male genitalia: aedeagus left side, parameres, genital ring. Scales 0.25 mm.

Figure 17. *Lebia timorensis* sp. nov. male genitalia: aedeagus left side, parameres, genital ring. Scale 0.5 mm.
roots in, the Oriental Faunal Region, whereas about one third rather belong to the Australopapuan Region, either the Papuan or Australian Subregions. The discussion, whether the Papuan fauna merits a separate region, whether it should be subordinated under the Australian Region, will not be discussed herein, because for the present question it is of secondary value. The main question is rather, which elements have reached Timor from the west or north-west, which from the east or south.

With respect to genera, the following genera clearly are Oriental faunal elements, diverse in southeast Asia but either absent in New Guinea and Australia, or with only few representatives: Caelostomus, Arhytinus, Colpodes, Dicranoncus, Euphlynes, Acupalpus, Batoscelis, Coleolissus, Egadroma, Harpaliscus, Lampetes, Platymetopus, Aristolebia, Peliocypas, Planetes, and Styphlomerus.

The following genera belong to the Australopapuan fauna: Mecyclothorax, Prosopogmus, Rhytisternus, Altagonum, Notagonum, and Lacordairea.

Genera which are speciose in the whole Oriental-Australopapuan realm are: Clivina, Perileptus, all Tachyine genera mentioned, Gnathaphanus, Morion, Perigona, Amblystomus, Chaenius, Anomotarus, and Lebia. Most of these, however, are probably rather of Oriental origin, but have large numbers of species in the Papuan and/or Australian Regions.

With respect to species the distribution is slightly different, because some species from genera of predominantly Oriental distribution either are endemic in Timor (see below), or are similar or closely related to species from New Guinea or Australia, for example Clivina fessa, Polyderis cf. subbrunneus, Dicranoncus queenslandicus, Batoscelis oblongus, and Coleolissus papua.

Another group of species is part of a subgroup that is restricted to the Wallacea Region, to Sulawesi, the Aru- and Kei Islands, and the Moluccas, for example Aristolebia timorensis and related species, Lebia timorensis and related species. The concept of Wallacea as a distinct biogeographic region is supported by these species groups.
Figure 23. Summit plateau of Ramelau, collecting site for *Mecyclothorax timorensis*, *M. reidi*, *Rhytisternus externus*.

Figure 24. Edge of Lacluvar. Light trap was placed at edge of playing field overlooking deep gorge between playing field and hill.
A number of species seem to represent endemics of Timor. However, in view of the completely unsatisfactory knowledge of the carabid fauna of surrounding areas, the endemism of some of these species is doubtful. Probably all newly described species may be endemic, likewise the undescribed *Prosopogmus* and *Altagonum*, the three *Anomotarus*, and the three undescribed *Peliocypha*, whereas the status of the unidentified *Harpalini*, *Colpodes*, and some other species presently cannot be settled.

From this, admittedly, quite restricted evidence we may state that Timor is home to a mixture of carabid genera and species of different provenances and that the island in some ways rather acts as a hinge between the Oriental and Australopapuan faunas. However, the Oriental part of the fauna is more numerous in terms of genera, as well as species. This somewhat contradicts a too strict perception of the various faunal borders that have been drawn through different parts of the Indonesian and Philippine insular belts.

Of the 53 species collected during the expeditions 31 were from lowlands (0–1000 m) (Fig. 24), 28 from moderately high altitudes (1001–2000 m) and 8 from high altitudes (> 2000 m). The focus on relatively upland localities (including several of the ‘lowland’ sites above 700 m) reflected the relative poverty of good habitat in the lowlands exacerbated by the aridity of the lowlands in the dry season. However there was considerable disturbance from grazing from sea-level up to mountain summits. The 12 species identified as endemic were mostly collected from middle and high altitudes (10), with 5 species occurring in lowlands. The 12 identified species which are oriental or widespread in the region were mostly collected in the lowlands (10) with 4 species present at moderate altitude and one species recorded from the summit of Ramelau. It is well known from the New Guinean and eastern Australian carabid faunas, that the species living high on mountain tops and tablelands mostly belong to the ancient Australian fauna, or, in New Guinea, are related to Australian faunal elements, whereas the lowland fauna in both countries is mainly composed of younger, more or less recently immigrant Oriental genera and species (Darlington, 1971; Baehr, 2003b). The Australian Museum survey supports this general observation.

Acknowledgments. The Australian Museum is particularly grateful to Helen Molesworth, who generously funded the expedition. It is further grateful to Dr Manuel Mendes, Head of Protected Areas and National Parks, National Directorate of Forestry, Ministry of Agriculture and Fisheries, Timor Leste, for permitting insect collection and supporting the expedition. Zito Afranio and Agivedo Ribeiro are thanked for their much needed assistance. The first author (MB) also is grateful to Derek Smith (AMS) for the kind transfer of the specimens to Munich.

References

https://doi.org/10.1163/22119434-900000321

https://doi.org/10.1163/22119434-900000321

https://doi.org/10.3897/zookeys.88.807

https://doi.org/10.1155/1964/88570

Appendix. The following species have been described from Timor but were not collected during the Australian Museum expeditions.

Calosoma timorensis Chaudoir, 1869: 367 (Timor)
Chlaenius timorensis Darlington, 1970: 344 (Timor)
Cicindela divina Horn, 1893: 200 (Timor)
Cicindela ehlersi Horn, 1914: 31 (Timor)
Cicindela timoriensis Jordan, 1894: 104 (Timor)
Clivina bullata Andrewes, 1927: 270 (Timor)
Collyris viridula Chaudoir, 1865: 503 (Timor)
Dioryche timorensis Schauberger, 1934: 12 (Timor)
Morion gracilis Jordan, 1894: 107 (Timor)
Paratachys orphninus Andrewes, 1925: 345 (Timor)
Scartites timorensis Bänniger, 1949: 140 (Timor)
Tachyura triloris Andrewes, 1925: 431 (Timor)