Koala Retrovirus (KoRV): Are Humans at Risk of Infection?

WENQIN XU*1 AND JONATHAN P. STOYE2

1 Section on Directed Gene Transfer, National Institute of Mental Health, Laboratory of Cellular & Molecular Regulation, 9000 Rockville Pike, Bethesda, MD 20892, United States of America
2 Head, Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, United Kingdom

xuwenqin@mail.nih.gov · jstoye@nimr.mrc.ac.uk

Abstract. This manuscript summarizes the break-out session held on koala retrovirus (KoRV): Any risks of human infection? at the Koala Conservation Workshop: The koala and its retroviruses: implications for sustainability and survival held at San Diego Zoo, April 17–18, 2013. The goals of this break-out session were to discuss the zoonotic risk of koala retroviruses, the necessity to test human populations for exposure, and precautions to be taken to protect humans who transport or handle koalas (Phascolarctos cinereus). Currently there is no evidence to support the zoonotic potential of KoRV, and the necessity to test humans for KoRV infection needs to be further justified. We recommend strict compliance with standard precautions when handling animals.

Koala Retrovirus (KoRV): Are Humans at Risk of Infection?

WENQIN XU*1 AND JONATHAN P. STOYE2

1 Section on Directed Gene Transfer, National Institute of Mental Health, Laboratory of Cellular & Molecular Regulation, 9000 Rockville Pike, Bethesda, MD 20892, United States of America
2 Head, Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, United Kingdom

xuwenqin@mail.nih.gov · jstoye@nimr.mrc.ac.uk

ABSTRACT. This manuscript summarizes the break-out session held on koala retrovirus (KoRV): Any risks of human infection? at the Koala Conservation Workshop: The koala and its retroviruses: implications for sustainability and survival held at San Diego Zoo, April 17–18, 2013. The goals of this break-out session were to discuss the zoonotic risk of koala retroviruses, the necessity to test human populations for exposure, and precautions to be taken to protect humans who transport or handle koalas (Phascolarctos cinereus). Currently there is no evidence to support the zoonotic potential of KoRV, and the necessity to test humans for KoRV infection needs to be further justified. We recommend strict compliance with standard precautions when handling animals.

In the extensive studies and discussions that followed the discovery of a putative human retrovirus, xenotropic murine leukemia virus-related virus (XMRV), which was first isolated from human prostate cancer tissues but later shown to be a laboratory contaminant, the likelihood of a gammaretrovirus jumping species and replicating efficiently in humans was proposed and dismissed. Some gammaretroviruses have been shown to have the ability to infect human cells efficiently in culture yet show no evidence of transmission to humans, for example, feline leukemia virus (specifically FeLV subgroup B) and porcine endogenous retrovirus (PERV), both of which are related to KoRV. While 2–3% of U.S. domestic cats are infected with FeLV, which causes cat leukemia and lymphoma, FeLV infection of humans has not been detected (Levy et al., 2008; Hartmann, 2012). Neither has PERV been demonstrated to be zoonotic, PERV has not been detected in patients who...